
Remote Sensing Applications: Society and Environment 23 (2021) 100554

Available online 2 June 2021
2352-9385/© 2021 Elsevier B.V. All rights reserved.

Towards a workflow for operational mapping of Aedes aegypti at urban scale 
based on remote sensing 

Verónica Andreo a,b,*,1, Pablo Fernando Cuervo b,c,1, Ximena Porcasi a, Laura Lopez d, 
Claudio Guzman d, Carlos M. Scavuzzo a 

a Instituto de Altos Estudios Espaciales “Mario Gulich”. Universidad Nacional de Córdoba (UNC), Comisión Nacional de Actividades Espaciales (CONAE), Ruta 
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A B S T R A C T   

Remote sensing (RS) applications for vector borne diseases are a field of high social impact increasingly relevant 
in the context of a higher frequency of Dengue, Chikungunya and Zika outbreaks at global scale and especially in 
Latin America. The operative use of RS technologies is however still rare. Therefore, the objective of this work is 
to generate and analyze multitemporal Aedes aegypti’s suitability maps and to share the open source tools used 
towards the building of an operative workflow. As a proof of concept, we implemented a process chain to obtain 
maps for Ae. aegypti activity within the 2017–2018 mosquito breeding season based on ovitraps records and RS 
data within the framework of ecological niche modeling. The workflow was carefully thought as to consider 
possible biases in training data, model calibration to attain the best hyper-parameter combination, model se-
lection, variable selection and validation with independent data. The predictive maps showed high suitability for 
Ae. aegypti within the city, except in large vegetated areas and the commercial downtown consistently with 
previous studies and our own observations. Relevant variables included distance to built-up surfaces, distance to 
vegetated areas and correlation, a texture measure reflecting surface heterogeneity. Validation results suggested 
that the spatial distribution of ovitraps should be re-examined. All the steps in the proposed workflow were 
implemented using freely available and open source software, which warrants reproducibility and allows for re- 
use and modifications in terms of methods and RS or mosquito data available.   

1. Introduction 

Mosquitoes are responsible for several human vector-borne diseases 
(VBD) around the world including malaria, West Nile fever, dengue 
fever, zika, chikungunya and yellow fever. Aedes aegypti, a mosquito 
originally from Africa, is the main vector of the causative agents of the 
four latter diseases (Souza-Neto et al., 2019). In recent decades, fav-
oured by global warming, urbanization, globalization, trade and human 
migration, Ae. aegypti has invaded many temperate areas of the world 
(Vezzani and Carbajo, 2008; Gubler, 2011; Liu-Helmersson et al., 2019), 
reaching latitudes as south as 40◦S (Rubio et al., 2020). This mosquito 

species is fully adapted to urban areas where it can fulfill important 
ecological needs living alongside humans (Powell and Tabachnick, 
2013). Urban areas provide water for immature stage development, 
blood for female reproduction and shelter that protects larvae and adults 
against harsh climatic conditions (Cheong, 1967; Wilke et al., 2019). 

Among the VBD transmitted by Ae. aegypti, dengue fever causes the 
greatest human disease burden, with an estimated 10,000 deaths and 
100,000 million symptomatic infections per year in over 125 countries 
(53% of the global population at risk) (Stanaway et al., 2016). The 
incidence of dengue has grown dramatically in recent decades, with a 
concomitant increasing frequency of outbreaks in South America during 
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E-mail address: veronica.andreo@ig.edu.ar (V. Andreo).   
1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Remote Sensing Applications: Society and Environment 

journal homepage: www.elsevier.com/locate/rsase 

https://doi.org/10.1016/j.rsase.2021.100554 
Received 30 July 2020; Received in revised form 30 October 2020; Accepted 27 May 2021   

mailto:veronica.andreo@ig.edu.ar
www.sciencedirect.com/science/journal/23529385
https://www.elsevier.com/locate/rsase
https://doi.org/10.1016/j.rsase.2021.100554
https://doi.org/10.1016/j.rsase.2021.100554
https://doi.org/10.1016/j.rsase.2021.100554
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rsase.2021.100554&domain=pdf


Remote Sensing Applications: Society and Environment 23 (2021) 100554

2

the past 10 years (Bhatt et al., 2013). Two of the largest dengue out-
breaks in Argentina occurred in 2009 and 2016, affecting more than 25, 
900 and 56,800 people respectively, and reaching highly populated 
cities from temperate regions like Córdoba and Buenos Aires (Seijo et al., 
2009; Estallo et al., 2014; Rotela et al., 2017). Prevention of 
mosquito-borne diseases like dengue, is mainly based on vector control 
and continuous entomological surveillance to estimate the potential risk 
for virus transmission and disease (Bowman et al., 2016). The preven-
tion programs are therefore typically focused on monitoring, removal of 
Ae. aegypti breeding sites to eliminate vector larval stages, treatment of 
larval habitats and insecticidal spraying to reduce adult density (Getis 
et al., 2003). 

The spatial distribution of vectors is often used as an indicator of 
where disease outbreaks are likely to occur in human populations 
(Ostfeld et al., 2005). Nowadays, Earth observation (EO) satellites 
constitute a basic source of environmental information used to relate to 
vector data within the framework of landscape epidemiology and 
ecological niche modeling (ENM) in order to produce potential distri-
bution maps (Ostfeld et al., 2005; Kalluri et al., 2007; Soucy et al., 2018; 
de Santana Martins Rodgers et al., 2019). Given its public health rele-
vance, many studies have addressed the distribution of Ae. aegypti and its 
environmental drivers. Most of them have focused on global and 
regional scales using mostly climatic predictors and medium to coarse 
resolution EO data (Moreno-Madriñán et al., 2014; Kraemer et al., 2015, 
2019; Johnson et al., 2017). Different studies have also mapped the 
distribution of Ae. aegypti at local scales in urban areas. However, with 
some exceptions (e.g. Arboleda et al., 2012; Rojas et al., 2017), most of 
them have produced static or unique maps that either consider only a 
couple of months of surveillance or aggregate a full year (or several 
years) of mosquito data (Espinosa et al., 2016a; Rotela, 2013; Estallo 
et al., 2018; Albrieu-Llinás et al., 2018). Meanwhile, practitioners need 
operative, detailed and timely information within each season as to 
decide when and where to intensify surveillance or intervene with 
control activities as to prevent potential disease outbreaks. 

In this context, and after two large dengue outbreaks, the authorities 
of the Health Ministry of Córdoba province, similarly to other urban 
areas in Argentina and Latin America, started a weekly monitoring of Ae. 
aegypti oviposition activity. To generate control strategies they required 
various fine resolution maps within the transmission season instead of 
relying on a single static distribution map. Those maps are typically 
produced ad hoc by academic support teams, following different ap-
proaches and using different sources of environmental data. 

Therefore, the objective of this contribution is to generate and 
analyze multitemporal Aedes aegypti’s suitability maps and to share the 
open source tools used towards the building of an operative workflow 
that can be readily updated with incoming new mosquito and environ-
mental data. As a proof of concept, we modelled and mapped the po-
tential distribution of Ae. aegypti for three dates in the 2017–2018 
mosquito season in Córdoba city, using data from ovitraps and high 
resolution imagery within the framework of ecological niche modeling. 
This framework has demonstrated to be a useful complementary tool to 
entomological indicators for Dengue risk assessment and prediction 
(Arboleda et al., 2012; Barbosa et al., 2014; Cromwell et al., 2017). 

2. Materials and methods 

2.1. Study area 

Based on its geographic, climatic and demographic features and also 
on vector data availability, we chose Córdoba city as the pilot area for 
our study. Córdoba is the second largest city in Argentina with a pop-
ulation of 1,330,023 inhabitants in 2010 (INDEC, 2010). It has a surface 
of 576 km2 and it is located at 31◦24′ S, 64◦11’ W, with elevations 
ranging 360–480 m.a.s.l. Córdoba city has a temperate climate, with 
mean annual precipitation of 800 mm. The winter is markedly dry and 
most precipitation occurs during summer months. The rainy season 

spans between October and March, with the highest precipitations 
occurring from December to February. The mean annual temperature is 
21 ◦C (range 12–38 ◦C). Winters are temperate, with several frost days in 
June and July (Servicio Meteorologico Nacional, 2019). The Suquía 
River, its tributary La Cañada and numerous other water channels run 
through the city. Human activities have resulted in a landscape char-
acterized by a highly developed urban core represented by buildings and 
0.66 km2 of green areas in the form of urban parks. Suburban areas are 
characterized by residential neighbourhoods, mainly single-family 
houses with yards, interspersed with parks and other green spaces. 
The urban area is surrounded by agricultural fields and very small forest 
patches (Fig. 1). 

2.2. Data 

2.2.1. Entomological data 
Entomological data consisted of 300 ovitraps distributed in 150 

houses over 5 different areas of the city (Fig. 1). This redundancy, i.e., 
two traps per house, decreases the probability of accidental data loses. 
Houses with ovitraps were at least 150 m apart, with an average mini-
mum distance of 350 m. Two ovitraps were placed in the front yard of 
each house, usually in shaded places and below or close to bushes or pots 
with plants. The possibility of trap installation depended on house-
holders’ written consent. Each ovitrap consisted of a black 1000 ml 
plastic container filled with 250 ml of tap water and a wooden paddle 
(15 × 2 cm) partially submerged and held vertically to serve as substrate 
for mosquito oviposition (Espinosa et al., 2018). Ovitraps were checked 
and replaced every week, starting from September 2017. Eggs laid in 
each wooden paddle were counted under magnifying glass. 

Since ovitraps are always placed in the same locations, we could not 
use them for validation purposes. Instead, we used a different and in-
dependent data set consisting of larval surveys performed monthly in 
different neighbourhoods of the city. In these surveys, the presence of 
larvae in domestic containers both inside and outside households was 
recorded. Larvae found were collected and transported to the laboratory 
where they were kept until adult emergence. If at least one Ae. aegypti 
adult per sample was detected, that house was considered positive.for 
taxonomic identification. Houses with at least one container with Ae. 

Fig. 1. Distribution of ovitraps in Córdoba city (Argentina).  
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aegypti larvae or pupae were considered positive. All entomological 
samples were collected and processed by the Zoonosis Division of the 
Health Ministry of Córdoba province (Argentina). 

2.2.2. Satellite imagery and geospatial data 
We used three Satellite Pour l’Observation de la Terre (SPOT) scenes 

covering Córdoba city. The images corresponded to: November 5, 2017 
(SPOT 6); December 14, 2017 (SPOT 7) and March 15, 2018 (SPOT 6). 
The dates selected depended on availability, cloud coverage and mos-
quito reproductive season. SPOT 6 and 7 imagery consists of four bands 
(three visible and one near infra red) with 6 m of spatial resolution. 
Images were provided by the Argentinian Space Agency (CONAE, https 
://catalogos.conae.gov.ar/catalogo/catalogoSat.html) given an agree-
ment with the French Space Agency (CNES, https://cnes.fr/en). 

We also obtained geospatial data corresponding to neighbourhoods, 
railways, rivers and channels in Córdoba city from the state dataset 
available online (https://datosestadistica.cba.gov.ar/dataset/ciudad-de 
-cordoba). 

2.3. Data processing 

A diagram of the full workflow implemented in this study is pre-
sented in Fig. 2 and the scripts developed are available in a public re-
pository (https://github.com/veroandreo/aedes-urban-maps). After 
atmospheric correction, common vegetation and water indices such as 
the Normalized Difference Vegetation Index (NDVI) and the Normalized 
Difference Water Index (NDWI) were derived from SPOT imagery, along 
with different texture measures (e.g., entropy, contrast, correlation) as 
to get synthetic bands for further steps in image analysis. Texture 

measures might be extracted from spectral bands or indices. In this case, 
we estimated the aforementioned texture measures from the near- 
infrared band given its known association with vegetation. A k-means 
unsupervised classification with 15 different classes was performed in 
order to identify different spectral covers over the city, following a 
methodology similar to that used by (Espinosa et al., 2016a). Once we 
obtained the classified map, we estimated distance to each of the iden-
tified classes. The results of the unsupervised classifications are pre-
sented in Fig. S2 in the Supplementary Material. 

A buffer of 100 m radio surrounding each ovitrap was overlaid upon 
all synthetic bands and different statistics were obtained, i.e., number of 
classes, the most common class, class diversity indices, NDVI and NDWI 
mean and standard deviation, interspersion, etc. The full list of initially 
estimated variables with their respective description is presented in 
Table S1 of the Supplementary Material. The size of the buffer was 
established according to the average flight range of host seeking females 
mosquitoes (Reiter et al., 1995). 

We also estimated distance to rivers, channels and railways. Our 
assumption was that these areas and their surroundings might represent 
suitable conditions for mosquitoes, acting as a source of adults. There-
fore, the closer the ovitrap was to the river or a channel, the higher the 
chances of showing oviposition activity. All remote sensing and GIS 
processing was done in GRASS GIS 7.8 (GRASS Development Team, 
2019). 

The selection of environmental layers was based on availability 
known and a priori expectation of influences over the mosquito popu-
lation (Espinosa et al., 2016b; Rotela et al., 2017; Rojas et al., 2017; 
Albrieu-Llinás et al., 2018; Estallo et al., 2018; Chen et al., 2019). We did 
not include aspect, temperature or precipitation because their spatial 

Fig. 2. Schematic representation of the workflow implemented. Aquamarine parallelograms are the input data, while yellow ones represent the different outputs 
obtained. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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resolution is (much) coarser than the resolution of SPOT imagery and 
downscaling of such variables was out of the scope of this study. 

2.4. Modeling and analysis 

We used MaxEnt 3.4.1 to model the distribution of Ae. aegypti and 
generate potential distribution maps (Phillips et al., 2017). MaxEnt is a 
machine-learning method that estimates the species potential 
geographic distribution by finding the probability distribution of 
maximum entropy (closest to uniform), subject to the constraint of the 
expected values of the environmental predictors (Phillips et al., 2006). 
MaxEnt was developed for presence-only data by contrasting presences 
against background locations (Phillips et al., 2006; Merow et al., 2013), 
and has shown to outperform other algorithms, even when used with 
few positive records as in our case (Elith et al., 2006; Hernandez et al., 
2006; van Proosdij et al., 2016). 

The ovitraps that evinced oviposition activity were considered pos-
itive, and thus used as presence sites in modeling procedures. For each of 
the dates studied, we used the positive ovitraps in a period of three 
weeks around the dates of the satellite imagery (November 2017: weeks 
44–46; December 2017: weeks 49–51; March 2018: weeks 10–12) as 
presence records. To minimize sampling bias and the impact of as-
sumptions about absences from areas that are not accessible to the 
species (Barve et al., 2011), we restricted model calibration (and thus 
background sampling) to the area where the species more likely had 
access to via dispersal. We defined this accessible area (M, Soberon and 
Peterson 2005) as the area within 800 m radio of each presence record. 
We chose this distance based on the maximum dispersal distance 
observed by Honório et al. (2003) for Ae. aegypti females in Rio de 
Janeiro. Background sampling was set to 10,000 points as in default 
settings. 

The complexity of models built with MaxEnt can be adjusted with the 
inclusion of additional feature classes (i.e., transformations of the orig-
inal predictor variables), as well as with a regularization multiplier that 
contributes to select those features and to reduce over-fitting (Merow 
et al., 2013). To determine the optimal model complexity, we calibrated 
preliminary models for the three selected months within the 2017–2018 
mosquito season using the kuenm R package (Cobos et al., 2019) and 
including all the variables derived from remote sensing described above 
(Section 2.3). We explored all combinations of: a) 17 values of the 
regularization multiplier (0.1–1.0 by steps of 0.1, 2–6 by steps of 1, and 
8 and 10), and b) nine sets of potential combinations of the four feature 
classes available: linear “l”, quadratic “q”, product “p”, and hinge “h” (l, 
lq, lp, lqp, h, lh, lqh, lph, lqph). A total of 153 candidate preliminary 
models were calibrated for each of the months studied, and each model 
was evaluated according to statistical significance (partial ROC tests), 
performance (omission rate), and the Akaike’s Information Criterion 
corrected for small sample sizes (AICc) (Cobos et al., 2019). The best 
preliminary model for each month was selected following the three 
criteria mentioned above: first, statistical significance <0.05; then 
omission rate <5%; and finally ΔAICc < 2 (Cobos et al., 2019). 

After determining the optimal parameters of each preliminary 
model, we reduced model complexity by performing variable selection. 
We applied two procedures available in the SDMtune R package (Vignali 
et al., 2019, 2020): removal of highly correlated variables (r > 0.7), 
followed of removal of variables with low contribution/importance for 
model performance (percent contribution < 5%). 

Once we obtained the sets of relevant variables for each date, we 
conducted a detailed model selection exercise, exploring once again, all 
combinations of the 17 values of the regularization parameter and the 
nine combinations of the four feature classes (see above). Again, a total 
of 153 candidate models were calibrated for each date, now only 
including the uncorrelated and most relevant variables. These models 
were evaluated and selected as detailed above, i.e., statistical signifi-
cance, omission rate and ΔAICc. 

After determining the best parameter settings for each date, we ran 

30 bootstrap replicates (500 iterations each), with extrapolation and 
clamping, and retaining a random partition of 25% of the points from 
each run (i.e., models were trained with a different 75% of data in each 
run). These final models, though only calibrated across M, were trans-
ferred to the full extent of the study area. We used the “cloglog” (Phillips 
et al., 2017) output format to assess average values across replicates as 
an estimate of the spatial distribution of suitable and unsuitable condi-
tions for the oviposition of Ae. aegypti. The uncertainty in model pre-
dictions was assessed using the standard deviation in the suitability 
values across the model replicates. We assessed the overall discrimina-
tion ability of each model on the basis of the area under the receiver 
operating characteristic (ROC) curve (AUC). 

We then extracted the average of the cloglog output per neigh-
bourhood. In this way, we intended to visualize the spatial and temporal 
variability of suitability also in an aggregated manner according to 
meaningful spatial units in terms of monitoring and implementation of 
prevention and control plans. 

2.5. Validation 

We used presence/absence data derived from monthly larvae surveys 
to perform a threshold dependent validation of final models. Particu-
larly, to validate the predictive map of each of the dates considered, we 
used larvae data from the subsequent month, e.g., to validate November 
2017 model output we used larvae surveys from December 2017. 
Table 1 shows the number of positive records used for training and the 
number of positive and negative larval records used in validation. 

For each date, we extracted the predicted probability for the pixel 
beneath the presence or absence coordinates plus the four neighbouring 
pixels. With this, we intended to minimize potential localization and 
projection errors. 

We estimated presence/absence thresholds according to different 
well-known criteria (Liu et al., 2005, 2013): minimum occurrence pre-
diction, mean occurrence prediction, 10% omission, sensitivity =
specificity, maximum sensitivity + specificity, maximum proportion of 
presence and absence records correctly identified and minimum ROC 
(plot distance; the threshold value or range of values where the ROC 
curve is closest to point 0,1). For each threshold, we obtained a confu-
sion matrix that allowed us to estimate different model accuracy metrics 
(Table 2, Liu et al., 2005). The threshold-dependent validation was 
performed with the package, SDMTools (VanDerWal et al., 2019) in R 
3.6 (R Core Team, 2019). 

3. Results 

The final MaxEnt models obtained after variable selection and final 
calibration are shown in Fig. 3. The predicted average suitability for Ae. 
aegypti is generally high in the urbanized area of Córdoba city and low or 
very low in the city outskirts and rural surroundings, respectively. This 
pattern was pretty constant in all three months studied. There were also 
some low predicted probabilities in the core commercial area in the city 
center, as well as very low probabilities in large vegetated areas such as 
“Parque Sarmiento”, a big park located in between southeast and 
southwest groups of ovitraps (Figs. 1 and 3). 

Table 3 shows the best hyper-parameter settings (i.e., best 

Table 1 
Number of presence and absence records from ovitraps and larvae surveys in 
each period selected. For training, only presence records from ovitraps were 
used. For validation, records were derived from larvae surveys.   

Ovitraps  Larval surveys 

Date pres abs Date pres abs 

Nov 2017 38 112 Dec 2017 48 25 
Dec 2017 134 16 Jan 2018 115 33 
Mar 2018 146 4 Apr 2018 17 52  
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combination of regularization multiplier and feature classes) resulting 
from calibration after variable selection for each period studied. All 
models were highly significant, presented omission rates below 5% and 
had the lowest AICc values (See Table S2 in the Supplementary Material 
for a summary of the first ten models obtained for each date). 

From the ROC figures (Fig. 4) and according to AUC values, the 
predictive performance of final models (based on the training data set) 
was average in general. Sensitivity and specificity were obtained for the 
threshold where sensitivity + specificity is maximal. In general, models 
seemed to be more sensible than specific (i.e., they where better in 
predicting positive than negative sites). However, the negative predic-
tive value was very high for all three months opposite to the positive 
predictive value that was very low. 

The variables that were retained as best predictors for each month 
with their respective contribution and importance are shown in Table 4. 
Most important variables varied for different dates. Only the variable 
distance to class 14 appeared as an important predictor in all cases. Class 
14 is representing borders of buildings and some asphalted surfaces (See 
detail in the Supplementary Material). The most important variable, in 
terms of contribution and importance, was correlation, both in 
December 2017 and March 2018 (Table 4). This variable was obtained 
from the near infrared (NIR) band and represents the correlation among 
grey levels in 100 m radio areas. There were some other variables that 
appeared to be important in two out of the three final models: distance to 
class 2 (represented by green crops and vegetated areas, see detail in 
Fig. S4 in the Supplementary material), distance to the railway and 
correlation estimated over the NIR band. 

The distance to buildings (class 14) presented a negative relationship 
with suitability in the three periods studied. However, the shape and 
steepness of the curve varied slightly (Fig. 5). The distance to vegetated 
surfaces (class 2) showed different response curves in November and 
March (Fig. 5a and c), the same than distance to railway that appeared to 
have a different response in December and March (Fig. 5b and c). 

The performance of models as evaluated with larvae survey data and 
threshold dependent metrics was rather poor, with maximum overall 
accuracy of 0.78 (Table 5). Sensitivity appeared high in many cases but 
the counterpart, specificity, was very low, which means that models 
performed much better in predicting presences than absences. This was 
also evident in positive and negative predictive values (PPV and NPV, 
Table 5). These results made it difficult to select a threshold better than 
the arbitrary 0.5 to classify the predicted suitability into presence and 
absence. 

Since threshold dependent validation did not yield a clear best 
threshold value (Table 5), we used a fixed probability of 0.5 to classify 
maps in presence and absence. From that, we obtained that ≈42% of the 
city surface can be classified as presence in November, 85% in December 
and ≈45% in March. In order to better visualize which areas increase or 

decrease their suitability, we used the binary maps described above to 
create difference maps as follows: December–November and March-
–December. We observed that the areas becoming more suitable from 
November to December are different from those becoming more suitable 
from December to March (Fig. 6). In the first case, peripheral areas in-
crease their suitability, while in the second, these areas seem to decrease 
their suitability in favor of more central parts of the city. 

After estimating the average probability per neighbourhood in each 
period studied, we can observe how suitability changes as season pro-
ceeds, with the highest probabilities covering larger parts of the city in 
December (Fig. 7, central panel). Some neighbourhoods, on the other 
hand, remain with low probabilities most of the season. These are, 
however, neighbourhoods with a low proportion of urbanized land (see 
for example those in the north or in the south and compare with Fig. 1). 
In general, the aggregated maps reflect the same pattern than the dif-
ference maps in Fig. 6. In this case, however, the percentages of the city 
surface with suitability higher than 0.5 are: 38, 55 and 38 for November, 
December and March, respectively. 

4. Discussion 

This work presents an approach that reinforces operational proced-
ures of public health authorities based on a scientific method, inte-
grating spatial analysis, EO data and data of presence and absence of the 
vector in an urban area of significant extension. The workflow allows to 
obtain predictive maps for Ae. aegypti oviposition suitability (Fig. 2). 
Instead of aggregating mosquito data to build a unique map, we 
modelled and mapped monthly oviposition for three different months 
within Ae. aegypti’s activity period according to the availability of EO 
data to examine the spatial changes in suitability as the mosquito season 
proceeds. 

We found that both distance to build-up surfaces (class 14) and 
correlation (a proxy of surface homogeneity, where high values indicate 
an homogeneous area within a 100 m radio) were important predictors 
of habitat suitability for oviposition (Table 4) and they showed a 
negative relationship in the response curves (Fig. 5). Consequently, the 
urbanized areas showed much higher probabilities than the rural areas. 
Moreover, the vegetated areas within the city as well as the core com-
mercial downtown showed low (er) suitability (Fig. 3). These spatial 
patterns within urban areas (positive association with neighbourhoods, 
but negative with vegetated and large concrete areas) are well known for 
Ae. aegypti (Tsuda et al., 2006; Rey et al., 2007; Khatchikian et al., 2011; 
Espinosa et al., 2016a,b) and they have been related to the availability of 
human blood-meal sources as well as the provision of artificial 
water-holding containers in and around human dwellings (Carbajo 
et al., 2006; Powell and Tabachnick, 2013; Cardo et al., 2014; Heinisch 
et al., 2019). 

Correlation values around 0.5–0.6 showed the highest suitability for 
oviposition (Fig. 5). In a 100 m radio then, female mosquitoes seem to 
prefer areas with intermediate values of correlation, i.e., not so homo-
geneous. This could explain the low suitability of the core commercial 
center and large vegetated areas within the city, as well as the rural 
surroundings, where correlation in a 100 m radio was much higher, i.e., 
the area within that distance is more homogeneous. The importance of 
landscape factors for mosquito abundance was already observed by 
Chen et al. (2019). Indeed, more heterogeneous environments, where 
the proportion of houses (instead of high buildings) is high (Carbajo 
et al., 2006), might offer the proper combination of temperature, hu-
midity, shadowed areas (i.e., vegetated backyards) and containers’ 
availability that favor oviposition and further larval development 
(Vanwambeke et al., 2007). 

Distance to crops and vegetated surfaces (class 2) was also a relevant 
predictor of habitat suitability for oviposition according to importance 
values (Table 4). The shape of the response curve was different in 
November and March, but there seems to be an optimum distance 
around 150 m from which the suitability decays either steeply or very 

Table 2 
Threshold-dependent measures used for assessing the predictive performance of 
models. References: TP, the number of presence points correctly classified as 
present; TN, the number of absence points correctly classified as absent; FP, the 
number of actual absence points classified as present; FN, the number of actual 
presence points classified as absent; P, the total number of actual presences; N, 
the total number of actual absences.  

Performance 
measure 

Definition Formula 

Sensitivity True presences correctly predicted TP/P 
Specificity True absences correctly predicted TN/N 
False positive rate  FP/N 
False negative rate  FN/P 
Positive predictive 

value 
Predicted presences that were real TP/(TP + FP) 

Negative predictive 
value 

Predicted absences that were real TN/(TN + FN) 

Overall Accuracy Proportion of presences and absences 
correctly predicted 

TN + TP/(P +
N)  
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slowly (Fig. 5). This might be explained by female mosquitoes’ (mean) 
flight range and the availability of shadowed places were to lay eggs or 
rest. Associations with vegetation cover as measured by NDVI were 
already observed in Córdoba city (Estallo et al., 2018) and elsewhere 

(Ostfeld et al., 2005; Philbert and Ijumba, 2013). 
Within the urbanized area, suitability varied during the season 

(Fig. 6) consistently with previous studies that showed a seasonal 
pattern of increased suitability in December and January decreasing 

Fig. 3. Average predicted suitability for Ae. aegypti in Córdoba city and corresponding standard deviation.  

Table 3 
Performance metrics for parameter settings regarding regularization multiplier (RM) and feature classes (FC) used for creating final models. FCs are as follows: linear 
= l, quadratic = q, product = p, and hinge = h.  

Date RM FC Partial ROC Omission rate 5% AICc ΔAICc AICc weights 

Nov 2017 0.5 lqp 0.00 0.00 1047.7 0.00 0.30 
Dec 2017 6 l 0.00 0.03 3827.46 0.00 0.99 
Mar 2018 3 h 0.00 0.00 4157.41 0.00 0.29  
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towards March (Rojas et al., 2017). The predictive maps obtained are 
also roughly consistent with studies analyzing oviposition (Dominguez 
et al., 2000; Andreo et al., 2019; Porcasi et al., 2019) and mosquito 
abundance (Gleiser and Zalazar, 2010) in Córdoba city. These have 
found high oviposition in the southeastern part of the city where suit-
ability values were generally high (Figs. 3 and 7). This area is mostly 
residential, though there are parts that hold informal settlements. The 
cemetery of the city is located in the south eastern part of the city, too. 
The combination of these conditions might create a higher proportion of 
potential breeding sites for female mosquitoes. Cemeteries have already 
been described as highly suitable areas for container-breeding mosqui-
toes (Vezzani, 2007). 

The evaluation metrics obtained from models’ calibration (Fig. 4) 
yielded values coinciding with an average predictive performance (i.e., 
AUC between 0.7 and 0.8, Araújo and Guisan, 2006). The validation 
with independent data, larvae surveys carried out in different parts of 
the city (see Supplementary Material), provided poor results (Table 5). 
The validation measures obtained (mainly specificity) might be influ-
enced by the fact that the independent data used refers to a different 

mosquito life stage (i.e., with potentially different habitat re-
quirements). However, the observed hatching rate for eggs of Ae. aegypti 
in Córdoba city is 93% (Dominguez et al., 2000). Hence, we think that 
the main factor affecting the results of validation with independent data 
is related moreover to the clustered distribution of ovitraps. To account 
for this sample bias, both background sampling and model calibration 
were performed in an area of 800 m radio from positive sites (See section 
2.4). Still, it could be explaining the high sensitivity and the low spec-
ificity values that we observed in general (Table 5), i.e., models are good 
in identifying highly suitable areas but fail to identify/predict low 
suitability sites. In any case, in applications related to human health, 
sensitivity is usually more relevant than specificity, i.e., we want to 
know where mosquito might develop even if some areas might be false 
positives. Importantly, despite the validation measures were not as good 
as we expected, they do not undermine the proposed method. Indeed, 
the problem might be arising from the clustered distribution of ovitraps 
and future applications and monitoring designs should take this into 
account. 

The spatial resolution of EO data used might have also influenced our 

Fig. 4. Receiver-operator curves (ROC) for final MaxEnt models. References: AUC, area under the receiver-operator curve; Sens, sensitivity; Spec, specificity; PV+, 
positive predictive value; PV-, negative predictive value. 
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results, as well as the size of the buffer we used. Further studies should 
address different buffer sizes since literature is variable regarding mean 
and maximum flight distance of Ae. aegypti females (Honório et al., 
2003; Verdonschot and Besse-Lototskaya, 2014). Most previous studies 
have used EO data with spatial resolutions equal to or higher than 6 m 
(Carbajo et al., 2006; Arboleda et al., 2012; Estallo et al., 2018). This 
prevents the identification of smaller features and potential associations 
with mosquitoes activity. Higher resolution EO data (less than 5 m) 
which would provide more detailed environmental information is not 
freely available and hence, not affordable for a monthly operative 
product as the one we propose. 

In our analysis, we could not identify an optimal threshold value 
with the threshold dependent validation. However, several criteria were 
around 0.5. Therefore, we used this arbitrary value to be able to 
represent binary maps and visualize suitability changes as the difference 
between monthly maps (Fig. 6). From November to December we 
observed that suitable surface increases and then it diminishes towards 
March. This pattern is consistent with seasonal oviposition curves 
(Dominguez et al., 2000; Andreo et al., 2019) and changes observed in 
entomological indices (Rojas et al., 2017). The areas that became more 
suitable from November to December are mostly characterized by resi-
dential neighbourhoods, that might offer the heterogeneity needed for 
mosquitoes to meet their habitat requirements (Carbajo et al., 2006). 
Towards March many areas became unsuitable, while others increased 
their suitability. Notably most of the northwestern part of the city 
remained unchanged (Fig. 6). It is difficult to explain these later changes 
without maps for the intermediate months. However, we can think of 
structural differences among neighbourhoods in terms of proportions of 
different classes and their spatial configuration, which could provide 
more suitable habitat for oviposition in different moments of the season. 
There can also be other explanatory factors that were not considered 
here. Estallo et al. (2018), for example, included socioeconomic and 
other urban land use related variables that resulted important in their 
predictive model. However, such variables are usually outdated (e.g., 
the last population census data available is from 2010) or do not have 
the spatial resolution required for a detailed map. 

To favor rapid response by public health authorities, we aggregated 
suitability values over neighbourhoods (Fig. 7). These aggregated maps 
could provide a quicker indication of where and when to concentrate 
efforts given the limited human and monetary resources assigned to 
prevention and control measures. In this context, despite some 

disadvantages, ovitraps are a useful and low-cost method for detecting 
and monitoring Ae. aegypti, mainly when adult densities are low (Focks 
and Diseases, 2004; Barrera et al., 2019). Indeed, they become highly 
relevant to model and predict habitat suitability at the beginning and 
end of the season, which coincides with higher AUC values (Fig. 4). 
Since mosquito biology and disease ecology are strongly linked to 
environmental conditions, the prediction of Ae. aegypti pre-
sence/activity at the beginning of the warm season in temperate cli-
mates might be key for the preparedness for a rapid response. 

In this contribution, we aimed at obtaining not only the mosquito 
predictive maps, but especially an operative workflow (Porcasi et al., 
2012) requiring minimum human intervention. Indeed, we imple-
mented a chain (Fig. 2) that builds upon long standing free and open 
source software such as GRASS GIS (GRASS Development Team, 2019), 
R (R Core Team, 2019) and MaxEnt (Phillips et al., 2017). This ensures 
its the reproducibility usability of the method since the tools are freely 
available. Importantly, we propose a workflow towards an operational 
system that includes data input, processing, modeling, validation and 
output. The steps in this workflow can be re-used for other cities and 
input EO data by only adapting window sizes according to spatial res-
olution and, either specifying proper atmospheric correction parameters 
or removing this step by using already corrected products, such as 
Sentinel 2 level 2 A or Landsat 8. Even though we implemented our 
proof of concept workflow using manually selected SPOT imagery, we 
are inclined to switch to Sentinel 2 data to make the chain fully repro-
ducible (Frery et al., 2020). Furthermore, the revisit time of Sentinel 2 
would allow for more images within a given period (eg., one month) in 
case of cloudy scenes. This would also allow for temporal aggregation of 
scenes instead of relying on a single image. Furthermore, it can be easily 
adapted to intake other EO data sources like ESA Sentinel 2 satellite with 
a spatial resolution of 10 m. The workflow can also be adapted to use a 
supervised approach if labeled cover classes are desired. In any case, 
unsupervised classes have denoted consistency across months and 
indeed, the same classes appeared as important predictors either in the 
three, or two out of the three moments studied (Table 4). On the side of 
mosquito data, we are collaborating with health authorities to make the 
upload and download of ovitraps and larvae data a more fluent process. 

5. Conclusion 

While EO data availability has increased dramatically in the last 
decade, their use in operational systems with social impact is still very 
limited. Filling this gap constitutes a huge challenge for the space 
agencies and the geo-science and remote sensing academic community. 
With this in mind, we presented here an operative workflow towards an 
operative system to obtain Ae. aegypti suitability maps. It requires 
minimum intervention and can be further automated, and adapted to 
other EO data. This workflow was carefully thought as to consider 
possible biases in training data, calibration of many models to obtain the 
optimum hyper-parameters combination, model selection, variable se-
lection and validation. 

In general, we found high suitability within the city, except in large 
vegetated areas and the commercial downtown. These results were 
consistent with previous studies and our own observations in the field. 
The maps confirmed the need to maintain the monitoring activities that 
are carried out so far (ovitraps and larvae surveys). Our results did 
suggest, however, that the present distribution of ovitraps might affect 
the predictive performance of models. A more random or systematic 
distribution across the city would be desirable. 

All the steps in our process chain were implemented using freely 
available and open source software. This warrants the possibility to 
reuse and modify the method since there is no proprietary licences 
involved. Moreover, it allows for changes in terms of methods or ac-
cording to available EO and mosquito data. Finally, it is important to 
remark that although our workflow does not constitute (yet) a fully 
operational system that can be replicated without modification, we 

Table 4 
Variable importance: percent contribution and permutation importance 
(average and standard deviation).  

Date Variable Percent 
Contribution 

Permutation 
Importance 

Nov 
2017 

Distance to Class 2 20.73 (11.80) 32.75 (14.19)  

Distance to Class 
13 

27.93 (23.14) 44.35 (15.50)  

Distance to Class 
14 

48.63 (21.48) 19.93 (13.05) 

Dec 2017 Distance to 
Railway 

0.54 (2.06) 0.03 (2.49)  

Distance to Class 
14 

31.19 (9.63) 12.91 (10.67)  

NDWI Average 4.48 (6.31) 17.05 (11.21)  
Correlation 49.77 (10.75) 36.70 (13.23)  
Contrast 12.71 (7.72) 30.53 (11.59) 

Mar 
2018 

Distance to 
Railway 

7.69 (3.77) 14.34 (6.08)  

Distance to Class 2 32.71 (12.81) 17.41 (12.47)  
Distance to Class 
10 

2.29 (4.14) 11.30 (7.07)  

Distance to Class 
14 

13.13 (10.91) 16.34 (9.27)  

Correlation 36.20 (10.50) 33.99 (9.13)  
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Fig. 5. Response curves for variables retained in November 2017 (top), December 2017 (center) and, March 2018 (bottom) models.  
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Table 5 
Evaluation of models’ performance using different criteria for threshold selection. Evaluation was carried out with larvae surveys belonging to the corresponding 
following month to that being modelled. References: roc, receiver operator curve; FPR, false positive rate; FNR, false negative rate, NPV, negative predictive value; OA, 
overall accuracy.  

Month Criteria Thres Sens Spec FPR FNR PPV NPV OA 

Nov 2017 min.occ.pred 0.115 1.000 0.000 1.000 0.000 0.658 nan 0.658  
mean.occ.pred 0.531 0.521 0.680 0.320 0.479 0.758 0.425 0.575  
10.perc.omis 0.320 0.896 0.200 0.800 0.104 0.683 0.500 0.658  
sens = spec 0.480 0.646 0.640 0.360 0.354 0.775 0.485 0.644  
max.sens + spec 0.490 0.625 0.680 0.320 0.375 0.789 0.486 0.644  
max.prop.cor 0.390 0.792 0.400 0.600 0.208 0.717 0.500 0.658  
min.ROC.dist 0.490 0.625 0.680 0.320 0.375 0.789 0.486 0.644 

Dec 2017 min.occ.pred 0.263 1.000 0.000 1.000 0.000 0.777 nan 0.777  
mean.occ.pred 0.604 0.565 0.606 0.394 0.435 0.833 0.286 0.574  
10.perc.omis 0.42 0.904 0.121 0.879 0.096 0.782 0.267 0.730  
sens = spec 0.590 0.609 0.606 0.394 0.391 0.843 0.308 0.608  
max.sens + spec 0.590 0.609 0.606 0.394 0.391 0.843 0.308 0.608  
max.prop.cor 0.26 1.000 0.000 1.000 0.000 0.777 nan 0.777  
min.ROC.dist 0.590 0.609 0.606 0.394 0.391 0.843 0.308 0.608 

Mar 2018 min.occ.pred 0.116 1.000 0.000 1.000 0.000 0.754 nan 0.754  
mean.occ.pred 0.591 0.596 0.294 0.706 0.404 0.721 0.192 0.522  
10.perc.omis 0.280 0.904 0.059 0.941 0.096 0.746 0.167 0.696  
sens = spec 0.650 0.481 0.529 0.471 0.519 0.758 0.250 0.493  
max.sens + spec 0.760 0.173 1.000 0.000 0.827 1.000 0.283 0.377  
max.prop.cor 0.170 0.981 0.059 0.941 0.019 0.761 0.500 0.754  
min.ROC.dist 0.680 0.404 0.647 0.353 0.596 0.778 0.262 0.464  

Fig. 6. Positive and negative changes in suitability from November to December and December to March in Córdoba city (Argentina). Before estimating the dif-
ference, predictive maps were converted to presence/absence with a threshold of 0.5. Changes are hence estimated only for probabilities of presence. 

Fig. 7. Average suitability aggregated by neighbourhoods in Córdoba city (Argentina).  

V. Andreo et al.                                                                                                                                                                                                                                 



Remote Sensing Applications: Society and Environment 23 (2021) 100554

11

consider it is an important contribution in terms of tools and procedures 
in that direction. 
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