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A B S T R A C T   

The main goal of this investigation was to assess landslides in the steep West-facing slope of the Sierras Chicas 
mountains in central Argentina using two complementary approaches: Differential SAR interferometry (DinSAR) 
and statistical modeling. The combination of the geological characteristics of the area, wildfires, intense rainfall 
events and human disturbances have made the area highly susceptible to landslides. This condition has been 
recently aggravated with the construction of a roadway. In this work, we applied DInSAR methods to explore the 
suitability of COSMO-SkyMed (CSK) acquisitions to measure displacements and we used Sentinel-1 C-band im-
ages for accuracy comparison. In addition, Generalized Linear Models were fitted to identify landslide- 
conditioning factors. Based on the results obtained, Sentinel-1 proved to be the most adequate source of im-
ages to perform interferometry, in contrast to Cosmo Skymed imagery that showed very poor coherence in the 
study area. The statistical modeling identified slope degree, distance to roads and fire frequency as the main 
variables explaining landslide occurrence on the west escarpment of the Sierras Chicas. Results will hopefully 
contribute to improving future applications of SAR interferometry both in the study area and others with similar 
characteristics, as well as the tools and knowledge for decision making in engineering and urban development 
projects in order to minimize risk.   

1. Introduction 

The Earth’s surface is under constant change and landslides are one 
of the most common manifestations of ground movement. These de-
formations and mass removal events are the result of a complex inter-
action of geological, geomorphological, hydrogeological, climatic and 
ecological conditions as well as manmade structures (García-Ruiz et al., 
2010; Gorsevski et al., 2006; Highland and Bobrowsky, 2008; Rozos 
et al., 2008). They represent a significant geological hazard worldwide, 
sometimes causing damage to infrastructures, great number of casualties 
in urban areas and severe damage to ecosystems (Bianchini et al., 2015; 
Moreiras and Coronato, 2009; Nutricato et al., 2015). Therefore, studies 
aiming at monitoring land surface displacements and understanding the 

conditions under which landslides are more likely to occur are of great 
importance to minimize risk. 

Remote Sensing and Geographic Information Systems (GIS) tech-
nology constitute powerful tools for landslide monitoring and hazard 
assessment. In particular, Differential Interferometry Synthetic Aperture 
Radar (DInSAR) has been successfully applied to measure land de-
formations. The launch of satellites with SAR sensors such as COSMO- 
SkyMed, operating at 3.1 cm wavelength in X-band, and Sentinel-1, 
operating at 5.54 cm wavelength in C-band, have significantly 
improved the ability to detect millimetric displacements. Such results 
are useful to update and improve landslide datasets over large areas, 
detecting changes in displacement velocities and providing significant 
advances to the understanding of landslide conditioning factors (Barra 
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et al., 2016; Calò et al., 2014; Di Martire et al., 2016; Herrera et al., 
2013; Infante et al., 2019; Pappalardo et al., 2018). 

Besides DInSAR methods, further complementary studies can be 
carried out to improve our understanding of landslide conditioning 
factors. Statistical modeling allows defining quantitative relationships 
between the spatial distribution of a set of environmental variables and 
the occurrence of historical landslides (Chen et al., 2017; Conoscenti 
et al., 2015; Youssef et al., 2016; Zêzere et al., 2017). These environ-
mental variables may include topography (e.g. slope steepness, aspect, 
elevation, curvature), geology (e.g. rock types, distance to faults, 
structural aspects), hydrology (e.g. distance to streams and soil mois-
ture) and land use/land cover (e.g. roads, type of vegetation, wildfires). 
A better understanding of the conditions associated with landslides will 
lead to accurate predictions, as to where landslides are more likely to 
occur, and the adoption of management regulations to reduce hazard 
(Zhang et al., 2016). 

In this work, we applied DInSAR methods to explore the suitability of 
COSMO-SkyMed (CSK) acquisitions to measure displacements on the 
steep west-facing slope of the Sierras Chicas mountains in central 
Argentina. Several landslide events have been registered in this area in 
the last few years, most of them related to the construction of a mountain 
road, locally known as El Cuadrado. One of the main advantages of CSK 
imagery is their high spatial resolution that allows more detailed 
displacement measurements. Moreover, the SAR instrument works in a 
high frequency spectrum (X Band), which makes it more sensitive to 
small terrain motions (Hanssen, 2001). However, our analysis was 
conditioned by a limited number of acquisitions within the same beam, 
and we applied DInSAR techniques to pairs of CSK imagery. In addition, 
we used the same approach with Sentinel 1 images of the same period, in 
order to validate results and compare their suitability. Along with DIn-
SAR techniques, we studied the environmental conditions under which 
historical landslides occurred in our study area using statistical 
modeling. To the best of our knowledge, this study represents the first 
application of Differential SAR Interferometry to address land defor-
mation monitoring in the Sierras Pampeanas, and it is the first attempt to 
identify landslide-conditioning factors in this area using Remote Sensing 
and GIS derived data. 

2. Study area 

The study area covers a portion of the west facing slope of Sierras 
Chicas mountains of Córdoba (eastern Sierras Pampeanas) in central 
Argentina, including El Cuadrado road and its surroundings (9100 ha, 
Fig. 1), where numerous landslide events occurred after the road was 
constructed. Sierras Chicas extend north-south for about 200 km (30◦ 36′

S and 32◦ 38′S) and east-west nearly 15 km (Carignano et al., 2014), 
with an altitudinal range between 500 and 1949 m a.s.l. Climate is 
temperate semi arid, with a monsoonal rain regime. The average annual 
rainfall is 850 mm, occurring mainly between October and March 
(spring and summer) and the mean annual temperature is 17.3◦ (Na-
tional Meteorological Service of Argentina, data from 1999 to 2014). 
These mountains belong to the Chaco Serrano phytogeographical sub-
region, and vegetation consists of a mosaic of forests, shrublands and 
grasslands. Native forests and shrublands are more abundant at lower 
elevations (<900 m a.s.l.) and grasslands dominate elevations above 
900 m a.s.l. (Cabido et al., 2018; Giorgis et al., 2017). 

Sierras Chicas present a steep western hillside, generated by the 
Punilla Fault, which raises the base block above the Punilla and Cala-
muchita valleys. The main lithology corresponds to gneisses and 
tonalite-biotytic schist of pre-Cambrian age (>2500 Ma), intruded by 
numerous igneous bodies of Eopaleozoic age (542 Ma) (Lencinas, 1971) 
(Fig. 1). The hillside is composed of foliated metamorphosed and frac-
tured rock with differential weathering degree along fracture zones 
(Carignano et al., 2014). Neotectonic activity is intense in the area 
(Martino et al., 2012; Massabie et al., 2003), with frequent shallow 
seismic events of low to medium magnitude (Richardson et al., 2012) 
and few events of great magnitude (Carignano et al., 2014). These 
seismic movements together with intense rainfall events are the main 
triggering factors of landslide activity in the Sierras Chicas (Beltramone, 
2005; Moreiras and Coronato, 2009). 

The characterized landslides can be classified as translational, rota-
tional, debris flow, slump, creeping and rock fall according to Varnes 
(1978). These landslides had well marked lobes and large magnified 
takeoff cracks, and a generalized tendency of the slope to creeping 
(Figure S1). The high degree of fracturation of the igneous-metamorphic 
rocks (Lencinas, 1971), due to the proximity to the Punilla fault and 

Fig. 1. Location and lithology of the study area in the western hillside of the Sierras Chicas of Córdoba Province, in central Argentina. The boundaries of Córdoba 
Province are in the smaller central image (black boundaries) and the red polygon highlights the study area (9100 ha). 
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weathering processes, is considered one of the main conditioning factors 
(Figure S2). Several landslide events, such as rock falls, slides and debris 
flows were triggered after intense rainstorms. To the north end of the 
Sierras Chicas, on the western hillslope of Cerro Uritorco peak (1949 m a. 
s.l.), a megalandslide was identified, probably triggered by an intense 
earthquake, in combination with the above-mentioned lithological 
characteristics, regional structures and climatic events (Carignano et al., 
2014). 

3. Materials and methods 

3.1. Differential SAR interferometry applied to Cosmo-SkyMed and 
Sentinel-1 

In order to study displacements by means of SAR images, we applied 
Differential Interferometry to pairs of Cosmo-SkyMed (CSK) and 
Sentinel 1 imagery. We had access to 20 CSK SAR images acquired be-
tween 2016 and 2017 in four different beams for our study area (Table 1, 
Fig. 2). We used images acquired on stripmap mode, HIMAGE param-
eter, 3 m of geometric resolution, sensor height of 620 km, simple po-
larization and swath width of 40 × 40 km. Single Look Complex Slant 
(SLC/L1A) specific level was chosen, which corresponds to images in 
oblique range and complex format. In addition to CSK imagery, we 
processed Sentinel-1B Level-1 SLC (S1), dual polarization from April 
2016 to September 2016 (Table 1, Fig. 2) to assess the accuracy of the 
DinSAR method applied to CSK and to compare the suitability of both 

sensors. Only descending orbit CSK pairs were available for our study 
area, and the equivalents for S1 were sought. Another optimistic feature 
of S1 is the accuracy of its orbit, which could improve a possible failure 
in the CSK data. Images were processed with Scientific Computing 
Environment, ISCE (CSK) and Sentinel Application Platform, SNAP (S1). 

The suitability of all possible pairs of images within a beam to 
generate an interferogram was assessed by the perpendicular baseline. 
In the resulting maps, we used a coherence threshold of 0.25 to mask out 
non-coherent pixels (Zhao et al., 2016). The interferometric coherence is 
a statistical measure of the phase stability between two dates. Coherence 
ranges from 0 to 1; 0 indicating that the interferometric phase is just 
noise, and 1 complete absence of phase noise. 

To evaluate what generates the changes in the coherence between 
the acquisitions, the critical baseline is analyzed based on the formula 
proposed by Hanssen (2001), considering an average slope for the area 
of interest of 30◦, which certifies that the geometric correlation coeffi-
cient is not linked to the final product to be detailed below. 

3.2. Landslide conditioning factors 

We analyzed landslide conditioning factors using GLM (Generalized 
Linear Models) with binomial response and logit link function (Quinn 
and Keough, 2002). We used an updated version of the landslide data-
base from Brasca Merlin et al. (2018), derived through interpretation of 
high resolution Google Earth and Bing Maps imagery (last access on 
February 2020), and SPARTAN aerial photos acquired in 1970 (1:22, 
000) and 1987 (1:35,000). The database was complemented with field 
campaigns in 2014 and 2015. Sixty landslides were registered with an 
average size of 65,563 m2 (Fig. 3). As in Gorsevsky et al. (2006), the area 
of initiation of each landslide was interpreted as the point representing 
the presence of a landslide, which proved to be accurate in comparison 
to other strategies of representing landslide occurrence (Zêzere et al., 
2017). In order to have the same proportion of presence and absence 
data, we randomly created 60 points to get the non-landslide dataset 
(Youssef, 2015). The non-landslide points had a minimum separation of 
150 m among them and were at least 90 m apart from the delineated 
landslide polygons. 

The pool of independent data for GLM fitting was created based on 
previous literature and disturbances affecting our study area (e.g. 

Table 1 
Incidence angles, number and period of acquisition of the Cosmo-SkyMed and 
Sentinel-1B images processed with Differential Interferometry to assess dis-
placements on the west hillside of the Sierras Chicas mountains in central 
Argentina.  

Sensor Beam or 
swath 

Incidence 
Angle 

Number of acquisitions and range of 
dates 

CSK H-01 22.6◦–25.7◦ 8 (05/2016–11/2016) 
H-07 32.43◦–34.43◦ 2 (02/2017–04/2017) 
H-13 39.34◦–41.39◦ 6 (01/2017–05/2017) 
H-18 45.7◦–46.8◦ 5 (05/2016–02/2017) 

S–1B IW2 36.47◦–41.85◦ 3 (04/2016–09/2016)  

Fig. 2. The acquisition coverage area of Cosmo SkyMed and Sentinel 1 imagery.  
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Argañaraz et al., 2015; Beltramone, 2005; Chen et al., 2017; Gorsevski 
et al., 2006; Zhang et al., 2016). We selected 15 landslide conditioning 
factors, including elevation, slope steepness, aspect, lithology, profile 
convexity, plain convexity, longitudinal convexity, cross sectional con-
vexity, minimum curvature, maximum curvature, land cover, fire fre-
quency and distance to faults, roads and streams. 

Topographic variables were derived from a Digital Elevation Model 
with a spatial resolution of 5 m (Argentinian National Geographic 
Institute, IGN). The aspect was reclassified in 4 directional classes (N, S, 
E, W) instead of the 8 classes mostly used in literature to reduce the 
degrees of freedom when fitting the model. The road network was ob-
tained from IDECOR (Infrastructure for Spatial Information of Córdoba 

Province, available at https://www.mapascordoba.gob.ar/, accessed on 
December 15, 2019), using first order roads. The drainage network was 
derived by visual interpretation of high-resolution imagery and contour 
and slope lines (Fig. 3). Distance rasters were derived at 10 m spatial 
resolution. 

The land cover map was obtained from a multitemporal classification 
of Landsat 8 OLI images acquired on April 16 and August 6, 2013 (30 m 
spatial resolution, path/row: 229/82). A supervised classification was 
performed using Support Vector Machines, obtaining an overall accu-
racy of 93.8% (for further details see Argañaraz et al., 2018). The fire 
database from the 1986–2017 period was derived from Landsat TM, 
ETM+ and OLI imagery (30 m, path/row: 229/82). We used the same 
fire database as in Argañaraz et al. (2015), in which burned scars from 
1999 to 2011 were extracted using a two-phase algorithm, consisting of 
identifying burned seeds first, and then applying a region growing al-
gorithm to delineate the boundaries of the burned areas (Bastarrika 
et al., 2011). For the remaining period, we used an updated version of 
the Burned Area Mapping Tool (BAMT, Bastarrika et al., 2014) imple-
mented in Google Earth Engine (GEE). BAMS algorithm proved to be 
efficient in delineating burned areas in Córdoba mountains, with 

Fig. 3. Landslide database for El Cuadrado road (E57) and its surroundings on the west hillside of the Sierras Chicas of Córdoba province, central Argentina.  

Table 2 
Summary of data analysis obtained for Cosmo-SkyMed imagery (beam 01, year 
2016) on the West hillside of the Sierras Chicas mountains in central Argentina.  

Pair Perpendicular 
baseline (m) 

Critical 
baseline 
(m) 

Geometric 
correlation 
coefficienta 

Days between 
acquisitions 

May 15 
- July 
07 

256.6 13215.6 0.9806 60 

July 14 
- Oct 
02 

69.4 13214.1 0.9947 80 

July 31 
- Sept 
16 

253.5 13217.1 0.9808 47 

July 31 
- Oct 
10 

140.1 13217.1 0.9894 71 

Sept 01 
- Sept 
16 

307.2 13213.3 0.9768 15 

Sept 16 
- Oct 
10 

117.1 13213.3 0.9911 24  

a Geometric correlation coefficient is obtained as (B_critical - B_perp)/B_crit 
being B_crit the theoretic critical baseline for a given pair and B_perp the 
perpendicular baseline estimated for that pair. 

Table 3 
Summary of data analysis obtained for Sentinel 1 imagery (IW2, year 2016) on 
the West hillside of the Sierras Chicas mountains in central Argentina.  

Pair Perpendicular 
baseline (m) 

Critical 
baseline 
(m) 

Geometric 
correlation 
coefficient 

Days between 
acquisitions 

April 17 - 
May 11 

27.5 18,692,4 0.9985 24 

May 11 - 
June 28 

3.3 18,701,2 0.9998 48 

June 28 - 
July 22 

123.4 18,701,2 0.9934 24 

July 22 - 
August 
15 

74.5 18,692,4 0.9960 24 

August 15 
- Sept 
08 

3.2 18,692,4 0.9998 24  
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omission and commission errors lower than 12% (Argañaraz et al., 2015; 
unpublished data). 

Before performing the statistical analyses, the pool of independent 
variables was tested for multicollinearity using the spearman test, and 
we removed variables having |r| ≥ 0.7. Afterwards, the 120-point 
dataset of landslides presence and absence was split to train (70%) 
and validate (30%) the model. The logistic regression model was fitted 
following a stepwise procedure, considering both directions, forward 
and backward, and using the step function of the Stats package in R (R 

Core Team, 2020). We ran full and reduced models to estimate the 
probability of landslide occurrence in relation to the set of independent 
variables selected. Model selection was carried out using the Akaike 
Information Criterion (AIC) (Quinn and Keough, 2002). 

Acknowledging the limitations of stepwise selection procedures, we 
also performed a best subset analysis to identify landslide-conditioning 
factors, which compares all possible models using a specified set of 
predictors (Quinn and Keough, 2002). In this approach, we considered 
the best 10 models based on the Bayesian Information Criterion (BIC). 

Fig. 4. Coherence masks generated for Sentinel-1 and Cosmo Skymed data, based on the 0.25 threshold. All pixels below this threshold in any pair were masked.  

Fig. 5. Distribution of coherence values for pairs of Cosmo-SkyMed (left) and Sentinel-1 (right) corresponding to a similar period (CSK: 2016-07-31 - 2016-09-16; 
Sentinel 1:2016–07-22 - 2016-08-15). 
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The number of times each variable was included in those 10 models 
indicated its importance to explain landslide probability. 

The predictive performance of the logistic regression model (30% 
validation data) and its fit to the training data were evaluated using the 
Receiver Operating Characteristic (ROC) curve (Lasko et al., 2005). In 
the ROC curve, the sensitivity of the model (true positive rate) is plotted 
against 1-specificity (false positive rate) for all possible cut-off values. 
The area under the ROC curve (AUC) represents the performance of the 
model to predict the occurrence or non-occurrence of landslides reliably. 
AUC values higher than 0.7 are considered acceptable, higher than 0.8 
are considered excellent and higher than 0.9 are considered outstanding 
(Hosmer and Lemeshow, 2000). All statistical analyses were performed 
using R (R Core Team, 2020). 

4. Results 

4.1. Differential SAR interferometry 

Based on the interferometric coherence maps and perpendicular 
baselines of the CSK set of images, the ones from beam 01 were the most 
suitable to generate interferograms. With this setting, the highest 

coherence results were obtained, although this beam showed a higher 
proportion of layover distortions in comparison to the other beams. In 
addition, the number of images available from this beam was higher (8 
acquisitions), which is desired in these kinds of studies. Therefore, we 
analyzed 28 possible interferometric pairs, from which 6 fulfilled our 
coherence threshold (>0.25) and perpendicular baseline criteria. 
(Table 2). 

The CSK imagery processing was not suitable for the identification of 
displacements in Sierras Chicas due to the low coherence of the inter-
ferometric pairs. On the other hand, the Sentinel-1 interferometric pairs 
showed better coherence, smaller perpendicular baselines and better 
revisit time, resulting in a considerably better theoretical accuracy 
measurement, despite their lower resolution. Nevertheless, as the study 
area had no landslides or appreciable movement during the acquisition 
period, no displacement could be measured with Sentinel-1 imagery. 
Table 3 summarizes the same analysis for S1. 

CSK pairs show very low coherence, especially on the steepest slopes, 
as it can be seen in Fig. 4, where the pixels with coherence lower than 
0.25 in any pair of images were masked. Instead, S1 pairs show higher 
coherence than 0.25 in most of our study area (Fig. 4). Geometric cor-
relation coefficients were not different between S1 and CSK data. 

Fig. 6. Interferometric phase of CSK images.  
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Perpendicular baselines in S1 images are much lower than the CSK ones 
with a similar critical baseline (Tables 2 and 3). This means that the low 
coherence values of Cosmo-Skymed images are a product of temporal 
decorrelation between images. As CSK sensor operates with a smaller 
wavelength than S1 the changes of vegetation on the hillside through the 
year affect more CSK than S1 images. 

The comparison of displacement measurements could not be per-
formed due to the lack of useful data from CSK, and S1 images were used 
to compare the coherence of C-band in the study area. Fig. 5 shows the 
coherence distributions for two pairs of CSK and S1 corresponding to a 
similar period of time, in which higher coherence values can be appre-
ciated for S1 than for CSK. To support data analysis, Figs. 6 and 7 show 
the interferometric phase in CSK images and S1 images, respectively. 

4.2. Landslide conditioning factors 

The stepwise logistic regression model identified both human and 
topographic variables as conditioning factors of landslide occurrence. 
Fire frequency, distance to roads and slope steepness significantly 
explained landslide probability, while the distance to the fault was close 
to significance (p = 0.0595; Table 4, Fig. 8). Landslides were more likely 

to occur at steeper slopes, close to roads and in areas with frequent fires. 
Nagelkerke’s pseudo R2 indicated that this model explained 50% of the 
variation in landslide probability. The ROC curves showed a very good 
performance of the model, with AUC being 0.86 and 0.84 for the training 
and testing dataset, respectively. 

The best subset analysis agreed well with the stepwise procedure, 
with fire frequency appearing in all the 10 best models, followed by 
distance to roads (six times), distance to fault (five times) and slope 
steepness (four times). Additionally, lithology appeared in two of the 
best models, although it was not significant in the stepwise logistic 
regression (Table 4, Fig. 9). 

5. Discussion 

5.1. Differential SAR interferometry 

In this study, we explored the suitability of Cosmo-SkyMed inter-
ferometric pairs to detect displacements on the steep west-facing slope 
of the Sierras Chicas mountains in central Argentina. To the best of our 
knowledge, this study represents the first application of Differential SAR 
Interferometry to address land deformation monitoring in the Sierras 

Fig. 7. Interferometric phase of S1 images.  
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Pampeanas with DInSAR techniques. Our results indicated that CSK data 
was not suitable to measure displacements in our study area. The ach-
ieved coherence in escarpment areas was very low to interpret the 
displacement product properly. This problem might be compensated for 
by using a greater number of acquisitions over a longer period of time. 
However, the fact that CSK data on Sierras Chicas was acquired with 
different beams, did not allow forming sufficient interferometric pairs 
for a multitemporal analysis. Table 1 details the number of CSK acqui-
sitions that could be grouped together to generate interferometric pairs 
according to the beam. The use of S1 in this work serves to support the 
characteristics of the relief with respect to a sensor as well as analyze if 
the wavelength detail is conducive to the relief. Sentinel 1 shows better 
results in terms of coherence and geometric correlation coefficient but 
requires further processing to assess the measured displacement. 

Several circumstances may compromise the accuracy of DInSAR 
measurements. Phase unwrapping is a key step in the process of building 
the displacement map, in addition to the fact that our study area showed 
highly variable coherence values. Problems related to excessive pre-
cipitation and earthquakes were discarded based on field data provided 
by a local weather station located within the study area and regional 
seismic activity (data not shown). Errors in the acquisition geometry and 
the digital elevation model (DEM) were also disregarded. The environ-
mental settings of our study area, characterized by a steep escarpment 
and dense vegetation, especially on the escarpment where forests are 
less disturbed by fire, logging and herbivory, were not ideal for the 
application of DInSAR techniques. In addition, unfavorable slope ori-
entations with respect to the radar sensor acquisition geometry affects 
measurements because the direction of movements occur at slope angles 
opposite to the measurement capability of the sensor (Colesanti and 

Wasowski, 2004). The heterogeneous temporal distribution of acquisi-
tions and short temporal extent of images in our stacks (Table 1) might 
also turn measurements less reliable, because of the existence of phase 
atmospheric artifacts that can only be compensated for with large 
multitemporal stacks (Wasowski and Bovenga, 2014). 

Our analysis of land displacements with CSK was also conditioned by 
the limited number of compatible acquisitions freely available for our 
study area, i.e., their angle was variable. This prevented us from cor-
recting errors by building longer time series of CSK imagery and 
applying more sophisticated techniques, such as Small Baseline Subset 
(SBAS) or Persistent Scatterer (PS) (Hooper, 2008). Instead, Sentinel 1 
offers freely available imagery with consistent acquisition angles 
allowing building long time series. Although our DInSAR analysis with 
S1 provided more coherent results than CSK, displacement measure-
ments were too high. It would be worthy to explore further DInSAR 
analyses with S1, building a longer time series than the one used in this 
work and more accurate techniques (Kampes, 2006; Idrees et al., 2013). 
In addition, the recently available SAR imagery from SAOCOM L-band 
might be more suitable for our study area, due to its longer wavelength, 
which will be less affected by the dense vegetation dominating the 
escarpment. Recent studies proved the suitability of SAOCOM imagery 
to measure displacements in the order of 6 cm/year (Roa et al., 2020). 

5.2. Landslide-conditioning factors 

The environmental conditions that better explained landslide 
occurrence in our study area combined topographic features and human 
disturbances. The influence of slope steepness, road construction and 
wildfires on slope instability was already acknowledged for the western 
slope of the Sierras Chicas (Beltramone, 2005). The AUC for both the 
training and testing datasets are considered excellent, according to 
Hosmer and Lemeshow (2000). 

The positive relationship between slope steepness and landslide 
likelihood is related to the increasing influence of gravitational forces 
and is coincident with previous research (Conoscenti et al., 2015; Con-
vertino et al., 2013; Gorsevski et al., 2006; Youssef et al., 2016). In our 
database, the average slope steepness of landslide presence points was 
29◦ vs. 19◦ of non-landslide points, and 75% of landslides occurred at 
slopes steeper than 23◦. According to Beltramone (2005), creeping 
processes are more frequent at milder slopes, rotational and trans-
lational landslides at intermediate slopes and rockfalls at steeper slopes 
(>35◦). Similar results were observed in other mountain areas, reporting 
most landslides at slopes steeper than 15◦–20◦ (García-Ruiz et al., 2010; 
Youssef et al., 2016) and around 30◦ (Lorente et al., 2003). 

In addition, two human variables were also identified as favoring 
landslides on the western slope of the Sierras Chicas: road distance and 
fire frequency. The greater likelihood of landslides closer to roads is 
particularly related to the construction of El Cuadrado Road (E57) in 
2011, involving slope cutting over disintegrated granite, schist and 
gneiss, and increasing their exposure to weathering agents (Figure S1 
and S2). Since the road was inaugurated, we identified 24 landslides, 
including several rock failure events, associated with its construction. 
This instability represents a serious threat to road users and mainte-
nance work is still necessary after eight years of road inauguration. 

The positive role of fire frequency on landslide likelihood has been 
reported in this and other mountains, observing an increased number of 
landslides and reactivation of old ones after wildfires (Beltramone, 
2005; Gartner et al., 2015; Highland and Bobrowsky, 2008; Ren et al., 
2011). In our study area, fires eliminate most aerial biomass (Torres 
et al., 2014), thus reducing the interception of rainfall by the canopy and 
ultimately affecting hydromorphological processes of hillslopes, altering 
water flow partitioning and effective evapotranspiration which, in 
combination with reduced soil strength caused by root mortality, may 
contribute to slope instability (García-Ruiz et al., 2010; Gehring et al., 
2019; Ren et al., 2011). Native woody species have shown high post-fire 
survival rates (Alinari et al., 2015; Torres et al., 2014); however, they 

Table 4 
Coefficients and significance of landslide conditioning factors in Sierras Chicas 
(central Argentina) obtained with logistic regression models. The reduced model 
was fitted using stepwise selection in both directions.  

Model Variables Coefficient Standard 
error 

Pr >
ChiSq 

AIC R2 
(%) 

Full Intercept − 15.9300 2152.00  91.4 53.2 
Stream 
distance 
(m) 

− 0.0013 0.0026 0.0154 

Road 
distance 
(m) 

− 0.0005 0.0002 0.0082 

Fault 
distance 
(m) 

− 0.0006 0.0005 0.8876 

Fire 
frequency 

0.8362 0.3081 <0.0001 

Slope 
degree 

0.0463 0.0299 0.0447 

Aspect: N − 0.3606 1.6380 0.6781 
Aspect: W − 0.9735 1.2480 
Aspect: S − 1.0810 1.5530 
Lithology: 
NPegP 

15.8300 2152.00 0.6211 

Lithology: 
Q1a 

1.0780 3018.00 

Profile 
convexity 

0.0004 0.0010 0.7067 

Reduced Intercept − 1.0894 0.7851  80.0 50.4 
Fire 
frequency 

0.8436 0.2542 0.0009 

Fault 
distance 
(m) 

− 0.0008 0.0004 0.0595 

Road 
distance 
(m) 

− 0.0005 0.0002 0.0307 

Slope 
degree 

0.0473 0.0233 0.0424 

Significant values are highlighted in bold (p < 0.05). 
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recover slowly and when wildfires are severe, survival is significantly 
reduced (Argibay and Renison, 2018). In addition, frequent fires pro-
mote early successional communities dominated by grasses and shrubs, 
which have greater flammability and burn more frequently than trees 

(Argañaraz et al, 2015, 2016, 2020). These recurrent fires prevent forest 
recovery, which provides soil strength greater than shrublands and 
grasslands (Chen et al., 2017; Zhang et al., 2016). 

Besides the above-mentioned variables identified as conditioning 

Fig. 8. Maps of independent variables included in the statistical analyses to identify landslide-conditioning factors in the Sierras Chicas mountains of central 
Argentina. LF Met Comp: La Falda Metamorphic Complex; Fm GP SS dep: Fm. General Paz Silt Sand deposit; EER Congl.: Estancia El Rosario, Conglomerate; FmCG 
Congl.: Fm Casa Grande, Conglomerate; FmLR Congl.: Fm Las Rabonas, Conglomerate. 

Fig. 9. Summary of best subset analyses to identify landslide-conditioning factors in Sierras Chicas (central Argentina). The y-axis indicates the number of times a 
variable was included in the best 10 models. 
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factors of landslides in our study area, there are other natural conditions 
suitable for landslides on the western slope of the Sierras Chicas, such as 
geomorphological dynamics, geology and soil characteristics (Bel-
tramone, 2005). In addition, the precipitation regime is characterized by 
heavy rainfall events, directly associated with landslides (Beltramone, 
2005). We believe that lithology was not identified as a significant 
predictor of landslides in our study because the available map was not 
detailed enough to provide significant variability (Fig. 1). Nevertheless, 
it was included in two of the ten best models (Fig. 9). 

6. Conclusion 

The implementation and use of interferometry among image pairs is 
a practical quantitative technique to monitor land surface displacements 
when data is scarce and its results are suitable for spatial analysis. 
Several limitations, as the availability of CSK images and suboptimal 
environmental settings, compromised the reliability of our results to 
accurately measure displacements. On the other hand, Sentinel-1 images 
provided better results for this area in terms of coherence, and they are 
potentially better to obtain more reliable displacement measurements in 
future studies, especially bearing in mind that their main acquisition 
mode is the Interferometric Wide (IW). 

The environmental conditions that better explained landslide 
occurrence in our study area combined topographic features and human 
disturbances. The likelihood of landslides was higher in areas of steep 
slopes, close to roads (mainly El Cuadrado Road) and more frequently 
burned. Besides slope steepness, previous studies also reported other 
natural conditions suitable for landslide occurrence on the west hillside 
of the Sierras Chicas. This highlights the importance of avoiding human 
interventions increasing slope instability, such as road construction and 
recurrent wildfires. Forest expansion, via reforestation projects and fire 
prevention, can contribute to increase soil strength and reduce landslide 
hazard. 

Our results will contribute to improving future applications of SAR 
interferometry in our study area and other areas with similar settings. 
This information represents a contribution to risk management and will 
help prevent improper decisions, like the construction of El Cuadrado 
road, across steep slopes and fragile substrate. 
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Argañaraz, J.P., Gavier Pizarro, G., Zak, M., Bellis, L.M., 2015. Fire regime, climate, and 
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