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Abstract—In this paper we compare three approaches for
change detection in SAR imagery: GRLT, MIMOSA and one
based on the Hellinger stochastic distance between distributions.
The comparison is made using COSMO-SkyMed images from
which training samples from four types of areas subjected
to change, and from two areas which underwent no change.
Whereas GRLT and the Hellinger distance-based procedures
yielded good results, MIMOSA failed at detecting the changes.

I. I NTRODUCTION

Research about multi-temporal image analysis has been
expanded because of the increasing availability of data from
Synthetic Aperture Radar (SAR) satellites with characteristics
such as short revisit time, all-day and all-weather acquisitions.
The COSMO-SkyMed (CSK) constellation consist of four
satellites having less than 12 hours revisit time. It represents
a remarkable data source to be used on change detection
applications.

Change detection is based on the comparison of two or
more images from the same scene acquired at different dates,
seeking for change indicators or dissimilarity measures for
each pair of pixels. Classical change detectors can be grouped
in two categories: 1) considering only the pixel intensity of
the images, and 2) considering local statistics in the pixel
neighborhood. Change operators are also divided according
to the number of temporal images employed [1].

Because of the multiplicative nature of speckle in SAR,
which can induce false alarms, classical methods use local
statistics in the neighborhood of each pixel. The standard de-
tector is based on the Log-Ratio [2]–[5] that computes the ratio
of the local means in an image pair. However, if the change
preserves the mean value modifying only the local texture
(modeled as a zero-mean multiplicative contribution [6]), it
will not be detected. The ratio of means would be useful to
recognize step changes whereas higher order statistics would
be suitable to detect progressive changes in multi-temporal
series [5].

Generalized Likelihood Ratio Test (GLRT) [1], [7], Log-
cumulants for spatio-temporal heterogeneity [5], Local statis-
tics Similarity Measures [4] and InformationTheoretic ap-
proaches [8], [9] are also applied as change indicators.

In this work, the performance of three different change
detection approaches for CSK images is evaluated. The com-
pared methodologies are: 1) Generalized Likelihood Ratio Test

(GLRT) [1], [7], 2) MIMOSA approach proposed in [10], and
3) Information theory separability measures, e.g. stochastic
distances and their derived hypothesis tests [11]. The assess-
ment considers various change levels: abrupt changes (e.g.
deforestation), evolutionary changes (e.g. vegetation areas), no-
change, i.e., stable areas (e.g. urban regions), and periodic
changes (e.g. vegetation phenology).

II. M ETHODOLOGY

The data set consists of two CSK-3 images, provided under
the ASI–CONAE SIASGE agreement. The study area is Foz
do Iguazú region, Paraná, Brazil (Fig. 1). The images used
were acquired with identical geometrical characteristics:29°
incidence angle, right acquisition, descendant orbit, Stripmap
Himage (HI) mode of about3m of nominal resolution. The
images were acquired on 2011/04/11 and on 2011/10/20.

The CSK data was preprocessed to obtain intensity cali-
brated data:σo = K−1 sinαREFR
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is the slant-range reference distance,j is the reference slant
range exponent,αREF is the reference incidence angle,FR

is the rescaling factor,K is the calibration constant, and
Pi is the CSK image amplitude value. Both CSK image
were coregistered using the ENVI 4.7 software, using both
automatic and manual control points.

A. Assessed methodologies

For the following three methods, coregistered SAR intensity
images acquired at different dates were analyzed, and a
map identifying the intensity of the change between images
(change map) was developed. All the methods used a7 × 7
sliding window, and the implementations were carried out
in the R platform (http://www.r-project.org/) for enhanced
numerical properties [12].

1) Generalized Likelihood Ratio Test (GLRT ) [1]: This
methodology is based on testingH0 : there is no change
againstH1 : the first image intensity comes from an underlying
reflectivity λ̂1 which is different from the reflectivity of the
second imagêλ2 .

Homogeneous areas in intensity format can be described
by using the multiplicative model [13]. Torres et al. [14]
model the heterogeneity using a Gamma distribution allowing
the number of looks to vary locally. The distribution of the



(a) CSK 3 image. Selected regions ofchange in
red, andno-changein blue.

(b) Landsat 5 TM image dated April 24,2011.
Source: Landsat/USGS.

Fig. 1. Study area in Foz do Iguazú region, Paraná, Brazil.

observed multilook intensity data follows, then, a gamma
random variable with density

fZ(z;L, λ) =
LL

λLΓ(L)
zL−1 exp

{−Lz
λ

}
,

whereΓ is the gamma function,z, λ > 0 andL > 0 is the
equivalent number of looks.

The maximum likelihood estimators based on the sam-
ple Z1, . . . , Zn of random variables are the sample mean
λ̂ = n−1

∑n
i=1

Zi and the solution of the non-linear equation
ln L̂−ψ0(L̂)− lnn−1

∑n
i=1

Zi+n−1
∑n

i=1
lnZi = 0, where

ψ0 is the digamma function.
Assuming that the intensity follows a Gamma distribution,

a maximum likelihood ratio test can be computed, comparing
the likelihood of H0 to the likelihood ofH1. As defined
by [1], considering a serie of only two images, the difference
of log-likelihood betweenH1 andH0 is ∆H1 = L(2 log 2 −
2 log (1 +R) + logR), whereR = λ̂1/λ̂2 is the ratio of the
mean reflectivities.

The equivalent number of looksL was computed in two
ways:

1) GLRTa: by maximum likelihood [11],
2) GLRTb: by the sample coefficient of variationENL =

(µ̂/σ̂)2 [15].

2) MIMOSA [10]: It detects outliers in a bi-dimensional
plot of the arithmetic (AM ) and geometric means (GM )
compared to the predicted joint distributions for Fisher dis-
tributed data (amplitude data was obtained from intensity
CSK data). In this approach, both the temporal arithmetic
meanAM = (A1 +A2)/2 and the temporal geometric mean
GM = (A1A2)

1/2 were calculated, whereA1 and A2 are
amplitude bands at times1 and 2, respectively. The Fisher
distribution functions (for bothAM and GM ) were fitted
using thefitdist R package.

3) HD based on stochastic distances [11]:Hypothesis
test methods are used to quantifying the contrast between
regions. Two samples (sliding windows) at different times can
be modeled with the random variablesZ1 andZ2 with den-
sities fZ1

(z, θ1) and fZ2
(z, θ2) respectively, and parameters

θ1 = (L1, λ1) and θ2 = (L2, λ2). It is possible to obtain
tests statistics based on stochastic distances for the hypothesis
H0 : θ1 = θ2 [16]. We used the Hellinger test statistic under
the Gamma model, defined in [11] as:
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which is asymptotically distributed as aχ2

2
random variable.

B. Performance evaluation

Selected regions of change and no-change between images
were chosen to serve as reference. The areas were identified
using control sites from three Landsat 5 TM images dated at
April 24, June 11 and October 17, 2011 (PATH 224, ROW 78)
and a Google Earth image of April 7, 2011.

The following changes types were considered: 1) from veg-
etation to bare soil, 2) from vegetation to urban cover, 3) from
bare soil to plowed soil, 4) from vegetation to flooded. Two
no-changes types were identified: 1) native vegetation zones,
2) calm water zones. Evaluation was carried out building ROC
curves for each methodology.

III. R ESULTS

Fig. 2 presents the change maps derived usingGLRTa,
MIMOSA, andHD methodologies;GLRTa andGLRTb
produced very similar maps, therefore only the former is
shown.

Fig. 3 shows the ROC curves for each method:GLRTa
in red,HD in blue, andMIMOSA in black.GLRTa and



(a) GLRTa (b) MIMOSA (c) HD

Fig. 2. Change maps. Range values are different but the color scale, shown in (a), is the same.

GLRTb produced very similar curves, therefore only the
former is shown. Both, the corresponding areas under the ROC
curves (AUC) and the optimized thresholds are tabulated in
Table I. Youden’s J statistic [17] was employed in order to find
the optimal cut-off: the threshold that maximizes the distance
to the identity (diagonal) line. The optimality criterion is, thus,
max{sensitivity+ specificity}.
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Fig. 3. ROC curves for each methodology. Red curve corresponds toGLRTa

method, black curve toMIMOSA, while blue curve toHD method

In order to explain the deficient results obtained with
MIMOSA, we identified the control regions of change and
no-change in theGM–AM scatter plots of the temporal

TABLE I
AREAS UNDER THEROCCURVES (AUC) AND THE OPTIMIZED

THRESHOLDS FOR EACH ASSESSED METHODOLOGY.

Methodology AUC Threshold selected

GLRTa 0.959 −1.764
GLRTb 0.954 −1.678

MIMOSA 0.569 0.538
HD 0.955 65.908

images. Fig. 4 shows the values of those ground truth pixels
that did not change in blue, those ground truth pixels that
changed appear in red.

Pixels that did not changed, for example calm water pixels
marked as blue, are close to the straight line of slope1, while
the areas that changed have values not very far from this
diagonal. In the work by Quin et al. [10], departures from
the joint G0 distribution (which they call “Fisher” [16]), are
associated to change but, in our data, such departures were
not observed.

IV. CONCLUSIONS

Methods based on the Generalized Likelihood Ratio Test
and stochastic distances presented similar very good perfor-
mance. They both are based on the assumption that intensity
SAR data can be fitted by Gamma distribution models. The
results highlight the use of these methodologies for change
detection in CSK data. However, it was observed in thechange
maps obtained with both procedures that homogeneous zones
(like calm water bodies) present more sensitivity to small
changes. It is possibly due to the better fitting of Gamma
model in those areas. Areas with different texture levels
will be analyzed using specific and suitable approaches and
distributions.
MIMOSA assumes an underlyingG0 distribution for

amplitude data, and identifies changes in those observations
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Fig. 4. Change and no-change training pixels inGM–AM scatter plots.

which depart from the diagonal of theGM–AM scatter
plot [10]. Pixels aggregated in a given image parcel that shows
a certain level of change are not beyond the joint pdf (as
demonstrated by their location in theGM–AM scatter plot)
as suggested by [10]. In this way,MIMOSA calculation fails
at detecting those changes. It seems that this method would
be only suitable to detect pixels whose change in amplitude
is noticeable, like change from/to urban pixels.

A relevant point to be considered in further works is the way
to select optimal window sizes to detect changes. As in any
statistically-based image processing procedure, large windows
are desired to obtain accurate estimates, but small windows are
required in order to grant observations without contamination.
Moreover, a future issue is to improve threshold determination
on change maps. It would be also interesting to assess the
relationship between the optimized thresholds here obtained
and the different change types defined.
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