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Abstract.
Space information has become essential for assessing the
damages caused by natural emergency situations like earth-
quakes, flooding or fires after its occurrence. During the last
decade the effort increasingly moved to the objective of us-
ing operational systems that combine space information and
physical modeling for forecasting and emergency mitigation
action planning. These emergency early warning and mitiga-
tion support systems require as input space information of a
higher quality like high resolution optical or synthetic aper-
ture radar (SAR) images which are scarce resources and re-
quire an significant latency from request to the actual image
acquisition.
In this paper we show that for the particular case of flooding it
is possible to use a operational medium fidelity physics model
to forecast the risk of flooding events and use this result to se-
lect in advance which are the most convenient images acqui-
sitions to request for the near future. We briefly describe the
Reduced Complexity Kinematic Wave Model used to predict
potential flood events and the results demonstrate the model
ability to replicate the process of runoff behavior over areas
with little slope. We use this flood risk map prediction to
give higher priority to those observations corresponding with
areas of higher risk of flooding, to overcome usual earth ob-
servation satellite system reaction time constrains, implying
that we can start acquiring useful data from the beginning of
the flood event.

1 Introduction
During recent years, Earth Observation Satellites (EOS)
space missions experienced an important increase both in
number and complexity. The main objective behind several
EOS missions currently under development it is not anymore
just to provide data for the scientific community post fact
analysis, but increasingly to develop near real time opera-
tional models and applications. Planning and scheduling of
several EOS/sensors is an increasingly important problem
for space missions because the need of guaranteeing an op-
timal use of its resources and a key factor for any near-real
time operational application system.

This is particularly true for emergency management
where currently there are several countries operating and de-
veloping space missions with this objective (e.g. Covello
et al. (2010) and Wang et al. (2011)). Another interesting

example of this operational applications approach for emer-
gency is SensorWeb 2.0. Mandl et al. (2008) presents an
ambitious space sensor web for disaster management with
the objective of facilitate the United States contribution to
the Global Earth Observation System of Systems (GEOSS).
GEOSS is a worldwide initiative in this direction, with the
objective to form a network of EOSs for a wide range of
applications in order to provide a real-time picture of the
whole planet by sharing all countries sensor resources. This
sensor web relays on most important standards in the area
like the Open Geospatial Consortium (OGC) and the Sen-
sor Web Enablement (SWE) suite. SensorWeb 2.0 intents to
present to the user the most simple possible experience inte-
grating automatically several space, air and ground sensors,
e.g. Moderate Resolution Imaging Spectrometer (MODIS),
NASA’s Earth Observing One (EO-1), the US’s Air Force
Weather Agency and an Unmanned Aerial System (UAS).
The sensor web allows the users to define their regions of
interests and then the system automatically detect events of
interest. What the users wants to see is automatically ex-
ecuted by means of an appropriate workflow and the best
available sensors. For example, if a fire is detected by in-
specting MODIS data, this automatically triggers a higher
resolution instrument like the Hyperion on the EO-1 satel-
lite to take a higher resolution image, which in turn also au-
tomatically triggers an Unmanned Aerial System take for
more detailed imagery.

An EOS system response time is all the time needed for
an acquisition reception, scheduling, uplink, execution, data
downlink, processing and distribution. EOS systems re-
sponse time are considered one of the key variables for the
success of these applications (Covello et al. (2010)). This
is not surprising considering that an EOS system response
time usually goes from 24 hours up to a week depending on
the capabilities of the mission satellites and ground segment
and that for several applications events of interest might have
durations of a few hours or days. Being durations of compa-
rable order of magnitude implies that even an small change
in the response time might imply a difference in the fea-
sibility of a particular operational application. Within the



emergency management context, time plays a major role and
system response time becomes even more critical.

Often it is difficult to gather images of value correspond-
ing to the first day of an emergency event since they are gen-
erally requested once the event has already occurred, mean-
ing that we frequently lost the opportunity of having this
very useful science data. Whenever possible, forecasting
seems to be the only answer to this problem. In the particu-
lar case of flooding, it is rather possible to predict an event,
allowing us to set up in advance future acquisitions of EOS
images by determining which data is more convenient to ac-
quire, and even, trigger also other air and ground systems
activities, combining all this effectively.

This paper explores the use of forecasting of flooding and
its use for the selection of which acquisitions are more con-
venient to schedule in order make more effective use of the
space resources avoiding loosing the first hours/days of most
critical data, particularly important for emergency applica-
tions. Using an operational medium fidelity physics model
we generate a flood risk map prediction over the region of
interest, which then is used to prioritize all possible future
acquisitions. By given higher priority to those observations
corresponding with areas of high risk of flooding, these ac-
quisitions are selected and can be uploaded to the EOS, be-
fore the actual flood has even started. This overcomes the
EOS system reaction time constrain and we might be able of
start acquiring useful data just on time from the very begin-
ning of the flood event.

The work presented here is considered a small step into
the exploration of the vast world of possibilities that is the
integrated use of early warning models in planning and
scheduling, a promising path to build real life operational
applications. We developed a simple planning system but
complex enough to allow us to explore and share our main
idea about how to use an early warning model continuous
output for prioritizing future acquisitions requests that in-
stead help improve the performance of the early warning
model. It is worth underlining that this planning system is
not the actual planning system of the EOS system we used,
but instead it has the unique purpose of selecting which are
the best acquisition to request for one application. Scaling
this up goes first in the direction of running several applica-
tions like this in parallel, each selecting which are the best
acquisitions for its own purposes. Furthermore, we consider
that for arriving to successful real life operational applica-
tions the present approach shall be used in combination with
several of the methods developed in the papers reviewed in
the previous work section. For example, the quality of the
predictions are important to avoid false positives that might
push the system to acquiring data that is not the most criti-
cal. Medium fidelity models will certainly fail to capture the
whole reality. Then, using an approach like that of Sensor-
Web 2.0 EO-1/ASE it is very important in order to correct
any false positive prediction as soon as possible.

The approach we present here can also be understood as a
way of optimizing the EOS resources, by selectively decid-
ing which products should be acquired it reduces the amount
of unused data downloaded and processed.

Value-added and emergency space applications typically
rely on a physical model of the phenomenon under study for
which a reliable data source it is very important. During a
flood event, we frequently also have a lot of cloud cover-
age, what makes the use of optical sensors more unreliable
for this kind of emergencies. Instead, SAR images that are
not affected by cloud coverage can be used to monitor and
map the extent of flooding. That is why SAR images are in-
creasingly used for emergency applications in order to gain
in reliability and to get a response time as lower as possible.

We choose to work with the following two EOS mis-
sions with SAR instruments: Radarsat-2 and ALOS. The
main RADARSAT-2 instrument is a SAR with quadri-
polarization, very useful for flood events monitoring, de-
signed with 10 modes of acquisition and offering a range of
incidence angles allowing to choose the beam position with
each mode. Each acquisition mode has a particular area cov-
erage and spatial resolutions. The Satellite has a Synthetic
Aperture Radar (SAR) with multiple polarization modes, in-
cluding a fully polarimetric mode in which HH, HV, VV and
VH polarized data are acquired. Its highest resolution is 1 m
in Spotlight mode (3 m in Ultra Fine mode) with 100 m posi-
tional accuracy requirement. In ScanSAR Wide Beam mode
the SAR has a nominal swath width of 500 km and an imag-
ing resolution of 100 m. Its left looking capability allows the
spacecraft the unique capability to image the Antarctic on a
routine basis providing data in support of scientific research.
ALOS has three instruments: L-band SAR, a panchromatic
camera and a visible and near infrared radiometer. This se-
lection allowed us to have in the model both optical images
and radar images with different resolutions, coverages and
acquisitions modes, and at the same we time keep the prob-
lem simple with only two satellites.

This work presents a decision-making tool that choose
from potential acquisitions of satellite images those more
convenient for a flood emergency event in the shortest time
possible based on the forecast of a simple hydrological
model. In what follows we present the hydrological model,
the planning problem model and the integrated system de-
veloped.

2 Hydrological Model
The hydrological model is based on a reduced complexity
kinematic wave model, i.e. we use a simplified equation of
Saint-Venant (Neil M. et al., 2007)) that was implemented
to identify possible areas affected by flood events. Since
the first proposal by Zanobetti et al. (1970) methods for pre-
dicting plain flood by methods of storage cells have become
justifiably popular. These methods discretize the floodplain
according to a regular Cartesian (or raster) grid and each



floodplain pixel in the grid is then treated as an individual
storage cell, with inter-cell fluxes calculate using uniform
flow equations such as Manning. We assign to each cell an
elevation equivalent to the average of all surveyed heights
within the cell and its status within the grid is updated at
each time step according to the input and output of the water
flow. For many of these models the flow channel is calcu-
lated using the 1D Saint-Venant equation and when the flow
overflows bankfull depth the water is directed to the stor-
age cells of the floodplain (Paul D. et al., 2010). Hydraulic
models can be classified according to the number of dimen-
sions in which they represent the spatial domain and flow
processes therein, and for particular problems a one-, two-
or even three-dimensional model may be most appropriate

For channel flow below bankfull depth there is increas-
ingly a consensus (after Knight and Shiono (1996)) that flow
processes can be adequately described by some form of the
one-dimensional shallow water equations. When a flood oc-
curs, channel flow overflows bankfull depth and water spills
onto adjacent floodplains with smaller slope. This situa-
tion becomes much more complex and can not be satisfac-
torily represented by simple dimensional schemes (Neil M.
et al., 2005). Although 1D codes are computationally very
efficient they suffer from a number of drawbacks when ap-
plied to floodplain flows. These include the inability to
simulate lateral diffusion of the flood wave, the discretiza-
tion of topography as cross sections rather than as a surface
and the subjectivity of cross-section location and orienta-
tion (Samuels, 1990). All of these fundamental constraints
can be overcome with two-dimensional codes and numerous
classes of 2D schemes have been developed in response.

The aim of developing and using models that are “as re-
alistic as possible” must be balanced against a number of
other important considerations (Beven, 2001) like: the com-
putational burden of the hydrodynamic model, investment in
data collection and model set-up and maintenance. There-
fore, the choice of appropriate flood model (diffusive wave
or kinematic wave Saint-Venant, 1D or 2D, etc) does not
only depends on the terms that may be omitted from the
Saint-Venant equation. The availability and accuracy of the
input data, such as topography, hydraulic properties of the
river and the floodplain and upstream and downstream hy-
drographs is critical information.

Specification. The channel flow (river) is modeled with a
kinematic dimensional approach which is able to capture the
flood wave propagating downstream and the flow response
to free surface height. The model used in this work is based
on the model LISFLOOD-FP, originally developed by Bates
and De Roo in 2000 (Bates and De Roo, 2000).

This can be described in terms of continuity and momen-
tum equations as:

∂Q
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Where Q is the flow in the channel, A is the cross sec-
tional area of flow, q is the water input from others sources,
S0 slope of the river bed, n is the GaucklerManning coeffi-
cient and P is wetted perimeter.

The floodplain flows are described similarly in terms of
continuity and momentum equations, discretized on a grid
of square cells that allows to represent fields of 2D dynamic
flow on the floodplain. We assume that the flow between two
cells is simply a function of the height difference between
the free surface (Estrela & Quintas, 1994), see Figure 1:
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Where hi,j is the height of free water surface at node
(i, j), t is time, ∆x and ∆y are the grid cell dimensions, n
is Manning’s roughness coefficient of foodplain, Qx and Qy

describe the volumetric flow rates (either positive or nega-
tive) between adjacent floodplain cells in the x and y Carte-
sian directions respectively and hflow represents the depth
through which water can flow between two cells.

Equation 4 is also used to calculate flows between cells of
the floodplain and the channel, updating plain cells depths
using equation 3 in response to the channel flow. These
flows are used also as the source term in equation 1 linking
channel and plain flows

Figure 1: Flow at cell edge is determined by water height
difference with adjacent cell

3 Planning Problem Model
The output of the hydrological model presented above is
used as input for the image acquisition planning problem
we describe here in order to request the most useful acquisi-
tions. The planning domains and problems were specified in
PDDL. For planning we uses best-first search algorithms and
we implement a multi-objective metric that allowed us to



compare different solutions to the same problem according
to different parameters. The algorithm showed good perfor-
mance and found an optimal solution for each experimental
test.

We divide the acquisition images planning problem in one
slot per day. The duration of the planning time horizon for
a single run is 24hs. We start solving the planning problem
for the first 24hs, then we move to the next 24hs, and we
continue like this repeating the planning cycle. In our model
we use the natural variable D to define which is the current
day over which we are planning. We increase it by one each
day.

The process followed for planning each day has two
phases: First, using a satellite sensor track propagation tool
we generate the set with all candidates images, and second,
using a planning tool we select the images to be requested
on that day.

The satellite sensor track propagation tool task is, given
the valid EOS ephemerids for day D and all valid target ar-
eas, to propagate the sensor swath projection on ground and
to identify all possible candidate images on day by register-
ing the start and end time of each intersections between the
sensor swath and the areas corresponding to the referred user
requests. This shall be done for each sensor mode because
the swath of each mode is different. The planning tool task
is to generate the choose from the set of candidate images
those that maximize the quality of the acquisition plan.

We consider that the details related with the use of the
satellite sensor track propagation tool are not interesting,
and correspondingly, in what follows we focus in the mod-
eling does for the planning tool.

3.1 Specification
Users does not request images directly. Instead, their re-
quests are usually defined by what is more close to their
needs. In our model an acquisition request is defined by:
(a) a target area definition, (b) an acquisition mode prefer-
ence definition stating what modes are more useful for the
user, (c) the priority that defines the importance of the re-
quest for the user, and (d) a validity period within which the
acquisition is useful. We denote by R(D) the set of all valid
users acquisition requests for day D (i.e. which validity pe-
riod includes D). For any r ∈ R(D) we denote by ar its
the target area definition, by mpr its acquisition mode pref-
erence definition, by prr its priority and by vr its validity
period. We use R instead of R(D) when this does not leads
to ambiguity.

We encode in a single natural variable named acquisi-
tion mode all high-level configuration and constraints op-
tions that a user can choose when requesting an acquisi-
tion. For example, if the EOS has two possible nominal
incidence angles for any acquisition, two operational modes
and three possible polarizations, we will encode all twelve
possibilities a {1, ..., 12}. For each EOS we define the set

M = {1, ..., k} that encodes all its possible acquisition
modes. An acquisition mode preference definition mpr is
a function M −→ MP that associates to each element
in M a value in MP = {1, ..., n} a subset of the natu-
ral numbers that is used to define the user preference for
each particular mode, being 1 the maximum preference and
n its minimum . For example: If an EOS has only three
acquisitions modes and if an user request has the highest
preference for mode 2, four time less preference for mode
3 and several times less preference for mode 1, we can
model this with M = {1, 2, 3}, MP = {1, ..., 100} and
mpr = {(1, 100), (2, 1), (3, 4)}.

An EOS usually has several operational constraints that
derive from its thermal, power, memory storage, commu-
nication and instrument operation capabilities and limits.
From the point of view of the elaboration of a plan of ac-
quisitions, it is frequently possible to translate this set of
physical constraints into a set of temporal constraints over
the various images that can be taken. For example, as limits
to (a) the total amount of time that the instrument can be ac-
quiring images per orbit, (b) the amount of time between two
successive acquisitions what usually depend on the acquisi-
tion mode, and (c) the amount of time that the instrument
can be continuously acquiring an image (may be different
for the acquisition mode).

These temporal constraints on acquisitions can be divided
as follows: (a) constraints over any number of acquisitions
but over a period of time, like per day or per orbit, (b) con-
straints over two contiguous acquisitions, and (c) constraints
over a single acquisition. For simplicity, the model we are
presenting here only considers the case (b) of constraints
over pairs acquisitions.

We assume that EOS acquired images are restricted to be
rectangular strips, which width depends on the acquisition
mode and which length it is given by the duration of the ac-
quisition. Even if in general other kind of images might be
taken, most EOSs in nominal conditions operates in agree-
ment with this assumption. Here we refer by candidate im-
age to a possible single image acquisition that at least par-
tially covers one single user acquisition request r for some
mode. We denote by I(D) the set of all candidate images
within the planning time horizon corresponding to day D.
We use I for I(D) whenever this does not lead to ambigu-
ity. Notice that I includes all the images corresponding to all
possible modes of acquisitions in M and each image i ∈ I
is a member of the set because it covers partially at least one
user acquisition request r. Given a user acquisition request
r ∈ R, we denote by Ir the subset of I with all possible
candidate images that are present in I because they cover
partially the target area of the acquisition request r ∈ R, i.e.
of ar. Notice that I =

⋃
r∈R

Ir.

Given a valid acquisition request r ∈ R, for any i ∈ Ir:

• cai denotes the covered area of i defined as the percentage



of the acquisition request target area ar that is covered by
the image i (with values from 0 to 1);

• mdi denotes the mode of i defined as the mode mdi ∈M
corresponding to image i acquisition;

• mai denotes the mode adequacy of i defined as mai =
mpr(mdi)/k where k = |M |, i.e. the preference value
mpr corresponding to the mode mdi of i over the maxi-
mum mode preference value k (with values from 0 to 1);

• pri denotes the priority of i defined as pri = prr, the
priority we assigns to image i is the priority defined by
the user acquisition request r (values from 0 to 1);

• usi denotes the used swath of i defined as the percentage
of the swath that goes over the target area ar, (values from
0 to 1);

• [sti, eti] denotes the time window of i with a sti start time
and a eti end time.

The planning problem is assumed oversubscribed, and
correspondingly, only a subset of I(D) can be actually se-
lected to be requested per day. We denote SI(D) the subset
of I(D) with all selected images to be requested for day D.
We use SI for SI(D) whenever this does not lead to confu-
sion.

Notice that I is the input for the planning tool and that SI
is its output, i.e. the planning tool task is to generate the set
SI by selecting from the set I of candidate images those that
maximize the quality of the acquisition plan.

Temporal Constraint. As mentioned above the present
model only considers the case of constraints over pairs of
consecutive acquisitions. For each pair of images (i, j) ∈
I × I , we denoted by ttij the minimum transition time the
satellite needed between the end of an acquisition i and the
start of acquisition j. We include in ttij all sources, from
slew time to acquisition mode change durations. For sim-
plicity, we considered the minimum transition time as de-
pending only on the acquisition modes of both i and j im-
ages (i.e. on mdi and mdj) and we assign ttij = 0 when
i = j and ttij = ttji, (even if in the latter case we could
have help eliminate several cases by setting ttij = INF
whenever i > j).

Given a subset of I denoted by S, we said that S is a
feasible solution that satisfy all temporal constraints when
for any pair (i, j) ∈ S × S we have that eti + ttij < stj or
etj + ttji < sti. We denote by DI(D) the subset of I with
all discarded images those images that if added to S make
the set not a feasible solution. We write simply DI instead
of DI(D) when it is not ambiguous.

Objective Function. The set SI is the feasible solution S
that maximizes the quality of the acquisition plan. By com-
bining four terms with α, β, δ and σ non-negative constants
that are used in order to give different weight them we de-
fine the following objective function such that the feasible
solution that minimizes it is the optimal solution:

F (S) = αfca(S) + βfpa(S) + δfma(S) + σfus(S) (5)

with:

fca =
∑
i∈S

1− cai (6)

fca measures the quality of the solution regarding total
covered area. fca is optimal when an acquisition covers a
wide part of a region of interest (near 100%), ie the value of
cai is high and the total value 1− cai is low. As the optimal
solution minimizes the function fca, acquisition i becomes
a good candidate to be selected by the planner.

fpa =
∑
i∈S

pri ∗ (1− cai + 1)

2
(7)

fpa measures the quality of the solution regarding areas
with greater priority. fpa is like fca with the difference
that the percentage value of area covered by acquisition is
weighted by the priority of the associated region. When area
coverage of two or more acquisitions is equal or similar, the
value pri will decide which image select. The image with
less chance of being selected is one that covers a small per-
centage of an area and the priority of the region associated
is very low (equivalent to high values of pri ).

fma =
∑
i∈S

mai
k

(8)

where k = |MP | is the cardinality of MP , the value
that correspond to the lowest preference. fma measures the
quality of the solution regarding the acquisition mode ad-
equacy. fma considers the priority of an acquisition mode,
depending on whether an appropriate mode to monitor a par-
ticular emergency. In the worst case mai

k equals 1, i.e. mai
equals k , this would indicate that the acquisition mode of i
is not the most appropriate and therefore it has a low prior-
ity assigned. In the best case, the most appropriate mode has
priority equal to 1 and the fraction mai

k reaches the smallest
value possible

fus =
∑
i∈S

1− usi (9)

fus measures the quality of the solution regarding swath
percentage over the area of interest. A optimization criterion
can be evaluated where the main interest is focused on max-
imize the use of the sensor instead to monitor an area. This
idea aims to satisfy various user requests with a single satel-
lite pass. The optimal case of the function fus occurs when
the value of swath percentage usi used to cover an area is
high and the total value 1− usi is low.



3.2 Implementation
Planner tool. Even if we could had used a different ap-
proach to solve this optimization problem, we preferred to
use a planning tool and a domain independent language for
modeling the problem, because the purpose behind this work
is to start gathering experience with the main idea of in-
tegrate with synergy both the simplified application model
and a planning tool with the purpose of optimize the space
resources.

There are several planners able to solve classical planning
problems, but only a few support metrics. We choose to
work with the planner Metric-ff (Hoffman, 2003) and use its
WA* search algorithm. The WA* is an algorithm of Best-
First Search type and it is based on the same principles as
the A* algorithm. The best-first search select a node for
the expansion based on an evaluation function f(n) with the
lowest evaluation. f(n) evaluates each node by combining
the cost to reach a node n (g(n)) and the cost to reach the
target node (h(n) - heuristic): therefore f(n) = g(n)+h(n)
gives the estimated lower cost of the solution through n
node. WA* adds a weight to each parts of the evaluation
function (heuristic and cost). We defined both wh and wg
equal to 1 respectively. The g(n) we use is F (S) the objec-
tive function we presented in previous section.

Space State and Initial state. In our model the space
state is defined simply by SI ∪DI . To obtain the initial set
of images on a given area the SaVoir software was used for
given each satellite orbit, the sensor geometry and the shape
and location of the user’s acquisition request target areas, to
determine exactly when a satellite is start and end observ-
ing the target. The initial state of each planning problem
specified in PDDL was create by running a tool that takes
the XML output file of SaVoir software and convert it to the
PDDL input for the planner.

Planning domain definition. The domain and planning
problem were specified in PDDL v2.1 (see (Fox and Long,
2003)). PDDL object types, functions and predicates were
specified as follows. Four objects were defined: (a) image:
representing each candidate image; (b) mode: representing
the various modes in M ; (c) area: representing an acquisi-
tion request target area; and (d) D: representing current day.
For simplicity, we abstract here that indeed mode was repre-
sented with two objects that decompose mode in two fields
mainMode and subMode.

Six predicates and seventeen functions (fluents) were
specified. The figure 2 shows the two possible states where
both images may be acquired. These situations are similar
but they show that the order of acquisitions should be con-
sidered. Because the planner selects an image depending on
the evaluation function we need to look forward and back
over the planning horizon. Otherwise if in the case 2 b. the
planner first selects the B image then we would lose the A
image

Seven actions were needed: one for choosing the first im-

age when no image is in SI , two more for selecting an image
in the two conditions shown in figure 2, and four more for
discarding an image in the four conditions shown in figure
3.

Figure 2: States where is possible to acquire both image

The figures 3 show four situations where a temporal con-
flict occurs between the images acquisitions.

Figure 3: States where is not possible to acquire both image

Goal. We model the on board memory storage capacity,
communication down link capacity and ground segment op-
erational capacity by limiting the total number of images that
can be selected per day to be less thanmm, i.e. |SI| ≤ mm.
Correspondingly, the planner will terminate when the num-
ber of images in SI equals mm or because all the images in
I are selected or discarded (i.e. SI ∪DI = I). We refer the
former case as bounded goal, the latter as unbounded, and
that an image is checked if it is in SI ∪DI .

3.3 Tests and results
Table 1 shows the results obtained with the planner for four
scenarios described below. For scenario A, D and C we used
unbound goals and for scenario D we used a bounded goal
limiting the images in SI to a maximum of 6.

A. Four acquisition modes (EH2, EH4, EH6 and F6N of
SAR sensor on board RADARSAT-2 satellite), planning
4 days, the region of interest the low basin of Bermejo
river was visualized by the sensor two days, and an un-
bounded goal;



Table 1: Comparative table of tests and results

B. Acquisition modes like in item A, planning 4 days, the
region of interest the low, middle and high basin (each
with different observation priority) of Bermejo river vi-
sualized by the sensor three days, and an unbounded
goal;

C. Seven acquisition modes (one mode of AVNIR-2 sensor
on board ALOS satellite, two modes of PALSAR sensor
on board ALOS satellite and four modes of SAR sen-
sor on board RADARSAT-2 satellite), planning 4 days,
the region of interest the low basin of Bermejo river was
visualized by the sensors everyday, and an unbounded
goal;

D. Everything like in point C, but with a bounded goal lim-
iting images in SI to a maximum of 6.

4 Integrated System
The figure 4 shows the architecture of the integrated system,
its main subsystems and interfaces, and some key units.

Figure 4: Architecture of integrated system

Five main modules were considered:

• Data ingestion subsystem (SI): the external interface used
for receiving the input data, process and store them. This

subsystem can be composed of one or more units respon-
sible of processing and manipulating data. According to
our system, this unit receives the input data from the hy-
drological model, e.g. precipitation layer or a Digital El-
evation Model;

• Data storage subsystem (SA): interacts with all the sub-
system and it manages its data. The communication be-
tween units is done through this subsystem and therefore
changes on one module are transparent to the rest;

• Production subsystem (SP): This unit generates the data
tuple (region, time). It has two main units, the first unit is
responsible to obtain automatically a forecast of rainfall.
The second unit implements the hydrological model, it
obtains the input data from SA subsystem and then stores
its output there;

• Planning Subsystem (SPLA): This subsystem plans the
set of acquisitions. We consider two main units, the first
translates from XML (format of SaVoir output files) to
PDDL. The second unit refers to the Metric-FF planner
used;

• Display Subsystem (SVI): Currently this subsystem is
represented by SaVoir software with which we visualize
the input variables to the planner and the output selected
images.

One integrated scenario
A test scenario was created. The hydrological model was

ran on Bermejo River basin, located north of Argentina. For
a time window equal to seven days two overflow regions
were forecasted for the model. Because the overflow areas
are narrow regions, it was worked with Ultrafine and Fine
modes of SAR sensor onboard Radarsat satellite whose spa-
tial resolutions are the highest offered by the instrument, 3m
and 8m respectively. For a planning of seven days on re-
gions of interest 13 images were identified as potential ac-
quisitions (figure 5)

Figure 5: Gantt Chart: potential acquisitions on critical re-
gions

The planner found a solution in 40 seconds and went
through 30782 nodes and the plan was evaluated according



the total of covered area by each image and its acquisition
mode. The first overflow area occurs between the first and
second day of simulation and the second overflow area oc-
curs during the fifth and sixth days of simulation. There-
fore, the selected images on the first region during the first
days will provide important information about the start of
the flood. On the other hand the selected acquisitions these
days on the second region will provide information before
the event, which are useful for further studies. A similar situ-
ation happens with selected images during the last days, they
will provide post-event information on the first region and
current information on second region. Figure 6 shows the
obtained results, where five images were selected according
to the established metric.

Figure 6: Map and Gantt chart of the selected images on the
critical regions

The final selection was varied, in some cases the total
of covered area was prioritized and other cases the acqui-
sition mode was prioritized. For example, for the first day
of planning on the second region of interest the image Ul-
trafine.U12 with more resolution was selected. Otherwise
for the fourth and sixth day the opposite happened. While
Ultrafine mode has a higher priority that Fine mode, this
last was selected because its percentage of area covered is
higher.

4.1 Related work
Frank et al. (2001) address the problem of scheduling obser-
vations for a collection of EOS solving the scheduling prob-
lem by means of an stochastic greedy algorithm. (Bianchesi
and Righini, 2008) also address this problem adding also
the transmission of images and needed contact with earth
stations. Lemaitre et al. (2002) illustrated several algorith-
mic techniques for planning and scheduling problems of the
Pleiades constellation.

Globus et al. (2003) presented a genetic algorithm to a
problem with two satellites in a short planning horizon,
without memory and transmission constraints. Problems
with one satellite were also studied by Wolfe and Sorensen

(2000) and by J.F. and G. (2005) who solved small instances
with number of 50 requests. Bensana et al. (1999) y Vasquez
and Hao (2001) considered the problem of scheduling of one
optical satellite. SAR instrument scheduling was considered
by Harrison et al. (1999), who resolved cases with a single
satellite, 50 requests and a time horizon of a few minutes.

Potter and Gasch (1998) considered the problem of
scheduling Landsat7 mission daily activities by selecting the
requests with highest priority. The priority of each request
is continuously adjusted by considering a multi-factor cri-
teria including cloud covering, age of request, risk of a un-
fulfilled request, seasonal/latitude characteristics and clus-
tering. Even if the approach is driven by the received scene
requests this continuous priority adjustments allows to dy-
namically adjust the scheduling based on all key dynamical
factors improving overall plan quality.

Chien et al. (2005b) and Chien et al. (2005a) presents a
very successful project developed for EO-1 mission flight an
Autonomous Sciencecraft Experiment (ASE) that uses dedi-
cated autonomy flight software to improve science return for
various applications (e.g. wild fire and floods management).
Starting from a ground defined and up-linked set of high-
level goals (regions of interest), on board software, named
classifiers, analyze the images and when new activity is de-
tected, more detail science goals are generated to continue
monitoring the site. If no activity is observed, the image is
not down-linked saving costly mission resources.

Ip et al. (2005) present in more detail the advantages of
ASE for floods management applications, showing how it
effectively improves communication latency and bandwidth
restrictions, increase science content returned data by filter-
ing unuseful data such as scenes covered by clouds, identi-
fies science features of interest such as flood-induced change
and automatically re-plan on-board science goals triggering
the recollection of interesting data when a change is de-
tected. By placing data analysis and decision making on-
board the spacecraft, ASE reduces the time it takes to detect
and react to a flooding event to a few hours autonomously.
ASE flood classifiers demonstrated their ability to accurately
detect on-board various types of floodwaters, allowing a
rapid response on the onset of flooding and correspondingly
to increase the return of data of greatest value.

Chien et al. (2011) present a pilot operational flood
management application developed for monitoring Thailand
floods regions. This application uses several space data
sources and a sensor web, (including SAR satellite data as
we do in the present work). In this application the earliest
flood detection is done on ground by using MODIS data.
When a flood is detected, a specific goal is automatically
generated and uplink to EO-1 satellite that after pursue re-
lated floods data using its on board autonomous capabilities.
When needed more low resolution optical or SAR imagery is
automatically requested from various satellites (e.g. world-
view, Ikonos, radarsat2). Finally, from surface water extent



and a digital elevation model a water volume product is au-
tomatically generated.

Summarizing: Until recently, the starting point for most
space systems activity was given by a series of acquisition
requests generated outside the system by its end users, e.g.
the scientific community. Correspondingly, planning these
space systems activity was in practice reduced to scheduling
this oversubscribed acquisitions requests. EO-1 ASE pro-
posed an alternative scheme: on-board, its various classifiers
analyze science data in near real time. When an event of in-
terest is detected, triggers the generation of a new goal and
re-planning of the sensor acquisitions: ASE starts schedul-
ing all convenient future science acquisitions related with
the event. This scheme shortens the response time period
between the start of the event of interest and when the sys-
tem starts acquiring useful data. This is valid only for cer-
tain regions of interest that are specified as high-level goals
over which the classifiers are run. SensorWeb 2.0 add to this
scheme the possibility of automatically analyze one sensor
data at ground and use this to automatically trigger requests
of other sensors acquisitions. For example, the approach
followed in Chien et al. (2011) use MODIS data analysis in
order to detect a flood condition. When this occurs, a lower
resolution EO-1 acquisitions is automatically generated.

Optimizing which acquisitions are more convenient con-
sidering both predicted and current flood at the same level
is a broader planning problem, in the sense that it requires
incorporating early warning models into the planning loop.

5 Future work

There is place for improvement in relation to current ap-
plication and also to work on a similar scheme but with
other applications like wild fire management, or malaria and
dengue fever control. We are planning to work in enrich
the image acquisition planning model, tools and algorithms
used in several aspects like: (a) to consider constraints on
the number of acquisitions for a given period of time (e.g.
by orbit) and constraints over single acquisitions (e.g. can-
not take images continuously by more than 10 minutes) and
other constraints that reflect better ground, satellite and com-
munications limitations; (b) to automatically cut all parts of
a user request target area when acquired in order to pass to
the next planning cycle only the uncovered parts of that area;
(c) to test different algorithms for the optimization problem,
including tuning differently current one; and (d) to use plan-
ing and scheduler tools that allows a better temporal repre-
sentation.

Our final objective is to put in place various operational
hydrological applications of emergency management for
various flood basins over Argentina to be used in the context
of CONAE’s SAOCOM mission, such that each one will al-
low us to request the images more convenient for each basin
in agreement with the quota assignment.

6 Conclusions
The simplified wave hydrological model implemented pre-
dicts the affected areas and provides information about the
movement of the flood wavefront that progresses down-
stream. This helps optimize the response time on the fore-
casts of flood events. We showed the model ability to repli-
cate the process of runoff behavior on areas with little slope.
The model showed good numerical stability taking into ac-
count hydraulic principles such as mass conservation and
flow connectivity.

The image acquisition planning system we developed
based on the planning domain and problem models de-
scribed above shows that it is possible with available tools
(like SaVoir and the Metric-ff planner) to use the hydrologi-
cal model flood risk predictions to prioritize the acquisition
image planning problem and determine which are the most
useful image acquisitions that we should request for this par-
ticular application. The approach developed overcomes the
EOS system reaction time constrains allowing us to start ac-
quiring useful data just when it is needed, even before the
actual start of the flood event.

The experimental evaluations of the planning system con-
firm that the time needed for solving the problem depends
critically on the size of the initial state and that using a
bounded goal help decreasing the time needed for solving
the problem. If the number of images is not limited by a
bounded goal then all images should be checked and there-
fore the response time varies according to the initial number
of potential acquisitions and with the present approach the
planning system eventually will stop converging to a solu-
tion in a reasonable time and with reasonable computer re-
sources. The rationale behind the bound goal scheme is ba-
sically to limit the number of images that can be requested
to the quota assigned to the application. This is based in
the fact that SAR EOSs mission usually use a quota scheme:
for each user/application –like the one presented here– a fix
number of images, named quota, per period limit is assigned.
The response time depends on the metric used and when the
evaluation function combines two parameters like the per-
centage of covered area plus the priority acquisition mode
the time needed is reduced.
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