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ABSTRACT

We analyze the information content in COSMO-SkyMed data with different acquisition modes and polarizations. A set of
discrimination problems ranging from difficult to simple using samples from different land cover types is presented. Several
separability measures, e.g. stochastic distances and their derived hypothesis tests, are applied to pairs of samples, and their ability
to discriminate is assessed. From the studied modes, class separability of water, pasture, forest and urban is enhanced if the
lowest resolution mode is used. Both, ascending and left looking acquisition geometry yield better classification results. Distance
measurement tests between samples of the same class give better results for HH polarization than for VV polarization suggesting
that the analyzed cover properties are better described by that microwave configuration.

Index Terms— Information content, SAR, Stochastic distances.

1. INTRODUCTION

The COSMO-SkyMed (CSK) constellation is an outstanding data source; its four satellites have a less than 12 hours revisit time
and acquisition modes ranging from 1 to 100 m of spatial resolution. An interesting feature is the PingPong mode, which has
medium resolution and two polarization bands from HH, HV, VH and VV. An important challenge dealing with SAR data, and in
particular related to CSK data, is to evaluate the information content on different acquisitions configurations. Such assessment
will provide evidence regarding the best option for a specific application.

The ability to discriminate between different cover types is a way to measure information content in SAR data. Using
information theory, a discrimination problem is approached by measuring distances between probability distributions. Information
theoretical tools known as divergence measures are methods for contrasting stochastic distributions [1, 2].

To quantitatively compare two cover type samples, the following procedure was applied in [3, 4]: i) select a tractable and
suitable distribution model, ii) carry out parameter estimation, iii) compute stochastic distances as contrast measures, and iv) use
contrast measures as statistical test.

Many probability distribution models have been assessed for describing and analyzing speckled imagery. The multiplicative
model, a suitable statistical framework for SAR data, assumes that each observed value is the outcome of a random variable Z
(a.k.a. “return”) which is the product of two independent random variables, X and Y [5]. The random variable X models the
terrain backscatter, while Y models the speckle noise.

Homogeneous areas in intensity format can be described by using the multiplicative model [6]. Torres et al. [7] model
the heterogeneity using a Gamma distribution allowing the number of looks to vary locally. The distribution of the observed
intensity multilook data in homogeneous regions is given by the product of the constant X ∼ λ and a gamma random variable
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The maximum likelihood estimators based on the sample Z1, . . . , Zn of i.i.d. random variables are the sample mean
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ψ0 is the digamma function.

Hypothesis test methods can be employed to quantifying the contrast between regions. Two samples can be modeled with
the random variables Z1 and Z2 with densities fZ1(z, θ1) and fZ2(z, θ2) respectively, and parameters θ1 = (L1, L1/λ1) and
θ2 = (L2, L2/λ2). It is possible to obtain tests statistics based on stochastic distances for the hypothesis H0 : θ1 = θ2 [2].

Torres et al. [7] derived statistical tests for gamma random variables. We modified those expressions to consider different
equivalent number of looks, yielding:
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where SKL, S
β
R , SB e SH denote, respectively, the Kullback-Leibler, Rényi of order 0 < β < 1, Bhattacharyya and Hellinger test

statistics. When θ1 = θ2 under mild conditions the statistical tests are asymptotically χ2
M , being M the dimension of θi. Details

can be seen in [1].

In terms of image analysis, these decision rules offer a method to refute statistically the hypothesis that two samples obtained
from different regions can be described by the same distribution [2]. In the following we used β = 1/2.

2. METHODOLOGY

2.1. Data set

The data set consists of eleven CSK images, provided in the ASI–CONAE SIASGE agreement framework for AEARTE MSc
program, whose characteristics are detailed in Table 1. The study area is in the Iguazú region, Misiones Province, Argentina
(Fig. 1).

The CSK acquisition modes were: Spotlight (S2) mode of about 1 m of spatial resolution, Stripmap Himage (HI) of about
3 m resolution, and Stripmap PingPong (PP) of about 15 m resolution. HH and VV polarizations were used in the right (R) an
left (L) look sides. The orbit directions were ascending (A) and descending (D).

Table 1. CSK data set used with the corresponding codification (Code). Sensor: CSK satellite. AM: acquisition mode, P:
polarization, LS: look side.

Code Sensor AM P LS Orbit Date
HI HH RD csk3 CSKS3 HI HH R D 2011/01
HI HH RD csk4 CSKS4 HI HH R D 2011/12
HI HH RA csk3 a CSKS3 HI HH R A 2010/06
HI HH RA csk3 b CSKS3 HI HH R A 2011/06
HI HH LD csk3 CSKS3 HI HH L D 2012/03
PP HH LA csk2 CSKS2 PP HH L A 2011/10
PP V V LA csk2 CSKS2 PP VV L A 2011/10
PP V V LA csk4 CSKS4 PP VV L A 2012/03
PP HH LA csk4 CSKS4 PP HH L A 2012/03
S2 HH RA csk2 CSKS2 S2 HH R A 2009/08
S2 HH RA csk3 CSKS3 S2 HH R A 2009/09



The CSK data was preprocessed to obtain intensity calibrated data, which is computed by: σo = K−1 sin(αREF )R2j
REFF
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where RREF is the slant-range reference distance, j is the reference slant range exponent, αREF is the reference incidence
angle, FR is the rescaling factor, K is the calibration constant, and Pi are the CSK image amplitude value.

2.2. Samples collection

There were two approaches: one was to collect two samples of the same class (for example, similar types of crop, stages of
growth and development of the same crop, two differents water bodies) and the other one was to collect different classes (urban
versus pasture, for instance). Two samples of water, pasture, forest, and urban classes were collecte from the eleven CSK images.
Each sample consisted of about 150 pixels; details are shown in Figure 1.

(a) CSK PP HH LA csk2 image with samples:
water (blue), pasture (coral), forest (green), and ur-
ban (yellow).

(b) Google Earth. March 31 2012.
January 1, 2013.

Fig. 1. Study area and collected Source: ‘’Puerto Iguazú” 25°36′05.78′′S, 54°34′39.99′′W.

2.3. Statistical test computation

All distances were computed between each pair of samples. and their respective statistical tests were computed between samples.

The null hypothesis can be rejected at level η if Pr
(
χ2
M > s

)
≤ η, where s is the observed value statistic. Since we are

using the same sample for 28 tests, we modified the value of η by Šidák correction, a Bonferroni-like correction given by
η = 1 − (1 − α)1/t, where t is the test number and α the significance level of the tests.

2.4. Information content measurement

The empirical test size and power test have been used as a way to choose the most suitable distance measure with finite
samples [2]. We compute the Type I and Type II errors in order to measure discrimination power considering all distances (i.e.
four in each image). To determine the Type I error, samples from the same class were compared, resulting in 16 comparisons for
each image. On the other hand, to estimate the Type II error comparisons between samples from different classes were performed,
yielding 96 comparisons for each image. It is assumed that the lower is the test error, both the greater is the discrimination power
and the greater is the information content.

3. RESULTS

In table 2, absolute error and the error percent respect to the number of comparisons of each image are presented. All test
measures give the same results except Rényi test. The main source of error is the Type I, i.e., samples from the same class are
classified as belonging to different classes. Type II error is low in most image configurations, suggesting that these tests are able
to discriminate between regions belonging to different classes. Considering only the acquisition mode, the mean of % Type I and
the mean of % Type II errors are lower in PP mode, whereas they are greater in S2 mode. If the orbit direction is considered in
the analysis, both mean percent errors are lower for the ascending orbit. Regarding to the look side, both means are lower in the
left acquisition images. The mean % Type I error is lower for the HH polarization, whereas the average of % Type II error is



Table 2. Absolute error and the error percent with respect to the total number of comparisons (% Type I and % Type II)
Code Type I % Type I Type II % Type II

HI HH RA csk3 a 3 18.75 8 8.33
HI HH RA csk3 b 8 50.0 6 6.25
HI HH LD csk3 7 43.75 9 9.38
HI HH RD csk3 11 68.75 8 8.33
HI HH RD csk4 11 68.75 1 1.04
PP HH LA csk2 9 56.25 5 5.21
PP HH LA csk4 3 18.75 0 0.00
PP V V LA csk2 10 62.50 2 2.08
PP V V LA csk4 10 62.50 0 0.00
S2 HH RA csk2 10 62.50 10 10.42
S2 HH RA csk3 10 62.50 5 5.21

lower in VV polarization. With respect to the satellites, the mean % Type I error is lower in CSK3 images, whereas the % Type II
error is lower in CSK4.

4. CONCLUSIONS

From the studied modes, class separability of water, pasture, forest and urban is enhanced if the lowest resolution is used. Both,
ascending and left looking acquisition geometry yield better classification results. Distance measurement tests between samples
of the same class give better results in HH polarization than in VV polarization, suggesting that the analyzed cover properties are
better described by that microwave configuration.

Type I error rate could be caused by heterogeneity and outliers on the samples. It would be interesting to determine a proper
sample size for each class or image configuration in order to have the lowest possible error rate.

The lowest information content is presented in acquisition mode S2, which has the highest resolution. It is possible that the
sample size must be greater in order to significantly represent the defined classes. On the other hand, we hypothesize that as the
image resolution becomes finer, the assumption of small heterogeneity (that leads to Gamma distribution model for intensity) is
less suitable. When extremely heterogeneous areas are observed, it would be appropriate to introduce new distribution models in
order to describe SAR data, as in [2].
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