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The application of remotely sensed data to public health has increased in Argentina
in the past few years, especially to study vector-borne viral diseases such as dengue.
The normalized difference vegetation index (NDVI) has been widely used for
remote sensing of vegetation as well as the brightness temperature (BT) for many
years. Another environmental variable obtained from satellites is the normalized
difference water index (NDWI) for remote sensing of the status of the vegetation
liquid water from space. The aim of the present article was to test the effective-
ness of NDWI together with other satellite and meteorological data to develop two
forecasting models, namely the SATMET (satellite and meteorological variables)
model and the SAT (satellite environmental variables) model. The models were
developed and validated by dividing the data file into two sets: the data between
January 2001 and April 2004 were used to construct the models and the data
between May 2004 and May 2005 were used to validate them. The regression anal-
ysis for the SATMET and SAT models showed an adjusted R2 of 0.82 and 0.79,
respectively. To validate the models, a correlation between the estimates and the
observations was obtained for both the SATMET model (r = 0.57) and the SAT
model (r = 0.64). Both models showed the same root mean square error (RMSE) of
0.04 and, therefore, the same forecasting power. For this reason, these models may
have applications as decision support tools in assisting public health authorities in
the control of Aedes aegypti and risk management planning programmes.

1. Introduction

Dengue is one of the most widespread vector-borne diseases in the world (WHO
2009a) caused by any one of four antigenically distinct serotypes of the dengue virus
(DEN-1, DEN-2, DEN-3 and DEN-4) transmitted by the Aedes aegypti mosquitoes.
These mosquitoes mainly feed on humans, biting during the daytime, and live in urban
areas (Gubler and Kuno 1997, Rodhain and Rosen 1997). Their breeding habitats
consist of any type of water-holding container, from tree holes or leaves to discarded
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bottles (Hopp and Foley 2001, 2003, WHO 2009a). About 2500 million people live
in areas with potential risk of dengue transmission (Gubler 2004). The global inci-
dence of dengue has grown dramatically in recent decades; furthermore, there has
been an increasing trend in dengue outbreaks in South America during the past years
(WHO 2009b). In 2009, Argentina experienced the worst dengue outbreak of the
last few decades, with 26 923 confirmed autochthonous cases (locally transmitted by
mosquitoes) and 5 deaths. Cases were distributed in 14 locations, 10 of which (Buenos
Aires, Ciudad Autónoma de Buenos Aires, Catamarca, Chaco, Córdoba, Entre Ríos,
La Rioja, Santa Fe, Santiago del Estero and Tucumán) registered autochthonous
dengue cases for the first time. On that occasion, all the reported cases were caused by
the DEN-1 serotype, 92% of which were concentrated in the provinces of Chaco (46%),
Catamarca (36%) and Salta (10%), warm areas with ideal environmental conditions
for vector mosquitoes to breed (Ministerio de Salud de la Nación 2009).

While a vaccine is under development, the only currently available method of pre-
vention and control of dengue is combating the vector mosquitoes at both the larval
and adult stages (WHO 2009b). Although only A. aegypti females are directly involved
in dengue transmission, entomologic surveillance has been based on different larval
indices (container index, house index (HI) and Breteau index) where HI (percentage
of larvae-positive houses) is one of the most widely used (Focks 2003, Sanchez et al.
2006, Estallo et al. 2008). These indices have been used for many years to estimate
and monitor A. aegypti populations and to determine the potential risk of dengue
transmission (PAHO 1995, Tun-Lin et al. 1996, WHO 1996). Although some authors
have questioned the use of indices to identify dengue outbreak risk (Gomez-Dantes
et al. 1995, Sulaiman et al. 1996), larval indices are still the main tool for monitor-
ing A. aegypti because of their easy implementation. For that reason, it is important
to generate predictive models that allow for estimating larval indices considering the
environmental conditions of the vector breeding sites.

The A. aegypti distribution and abundance is strongly dependent on environmental
conditions (Focks et al. 1993a,b, Hopp and Foley 2001, 2003). Temperature, humid-
ity and precipitation have proven to significantly influence mosquito development and
survival (Hopp and Foley 2001, 2003). Several authors have hypothesized that the
spatial and temporal patterns of mosquito population dynamics are controlled by
environmental factors that can be remotely observed (Hay et al. 1997). Two vegetation
indices, potentially indicative of the mosquito habitat existence, may be derived from
the satellite images: the normalized difference vegetation index (NDVI) and the nor-
malized difference water index (NDWI). The NDVI has been widely used for remote
sensing of vegetation and has been applied to mosquito studies for many years (Hay
et al. 1997), as well as in many other applications including health and studies on
vector-borne diseases (Linthicum et al. 1987, Pope et al. 1992, Lacaux et al. 2007).
The NDWI is an indicator of the liquid water molecules (vegetation water content)
in vegetation canopies that interact with the incoming solar radiation (Gao 1996).
NDWI increases as the leaf layer increases, indicating that it is sensitive to the total
amount of liquid water stacked in the leaves. This index is less susceptible to atmo-
spheric scattering effects than the NDVI (Gao 1996). The vegetation water content
is also used to retrieve the soil moisture from microwave remote sensing observations
(Jackson et al. 2004). This index has been used to explore the remote sensing poten-
tial to map and monitor the vegetation water content for corn and soybean canopies
(Jackson et al. 2004), to monitor the water stress in semi-arid environments (Fensholt
and Sandholt 2003) and to characterize the land cover and the vegetation type (Xiao
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4256 E. L. Estallo et al.

et al. 2002, Boles et al. 2004). In this project, it was used to generate models that
included NDWI as an environmental predictor to forecast HI, considering that NDWI
could better forecast environmental variables to characterize mosquito habitat envi-
ronments. Therefore, the objective of this study was to test the effectiveness of NDWI
and other satellite and meteorological data and to develop two forecasting models for
A. aegypti HI in the city of San Ramón de la Nueva Orán.

2. Methods

2.1 Study site

The city of San Ramón de la Nueva Orán, hereafter Orán, is located in the province
of Salta (23◦ 08′ S, 64◦ 20′ W, elevation 337 m) in northwestern Argentina (figure 1).
With a population of 72 712 (INDEC 2001), Orán is the second largest city in the
province. Orán is surrounded by subtropical native forest. Despite its dry season, the
climate is subtropical, with an annual accumulated rainfall of 1000 mm, 78% mean
annual humidity and 21◦C mean annual temperature. Summers are hot with abso-
lute maximum and minimum temperatures of 45◦C and 11.5◦C, respectively. Winters
are temperate with one or two frosts in July, with absolute maximum and minimum
temperatures of 38◦C and –3◦C, respectively (Servicio Meteorológico Nacional).

2.2 Data collection

2.2.1 Entomological data. An entomological survey to assess A. aegypti infesta-
tion levels in Orán was carried out between 2001 and 2005 by personnel of the
National Coordination for Vector Control (NCVC) of the National Ministry of
Health. Technicians of the NCVC exhaustively inspected homes in Orán to estimate
A. aegypti infestation monthly. Our analyses were based on HI (percentage of positive

Orán

(a) (b)

SALTA
PROVINCE

N

E

S

500 km

W

Figure 1. (a) Map of Argentina showing San Ramón de la Nueva Orán city (Salta province)
and (b) a 225 km2 subset of Landsat image path/row 230/76 (6 November 2003) for Orán and
its surrounding areas. Satellite-derived variables (NDVI, NDWI and BT) were extracted from
the black square on the subset image.
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houses for A. aegypti larvae), one of the most widely used and easy to apply larval
indexes, where HI is the number of houses with A. aegypti larvae multiplied by 100
divided by the total number of inspected houses (Focks 2003, Sanchez et al. 2006,
Estallo et al. 2008). HI was recorded by the NCVC for a 4.5-year period (January
2001 to May 2005).

2.2.2 Remotely sensed data. The satellite-derived variables were obtained from
Landsat 5 (L5 TM) and Landsat 7 (L7 ETM+) path/row 230/76 satellite images
(16 days temporal resolution). A set of 26 images for Orán spanning January 2001 to
May 2005 were selected from the Argentine Space Agency (CONAE) catalogue. ENVI
(Environment for Visualizing Images, Research Systems) 4.2 software (2004) was used
for image processing. The images were georeferenced using a georeference image from
the GLCF (Global Land Cover Facility). Subsequently, a 225 km2 subset area that
included Orán (figure 1) was generated.

Since our time series data cover about 4.5 years and include images from two dif-
ferent sensors (L5 TM and L7 ETM+) and a range of acquisition dates, the images
were calibrated to convert L5 TM or L7 ETM+ digital numbers to exoatmospheric
reflectance (reflectance above the atmosphere) using their respective coefficients
(USGS Landsat 2010). In order to quantify the vegetation coverage and the vegetation
water content, we calculated the NDVI and the NDWI. Values of the earth’s surface
temperature were estimated through the brightness temperature (BT) (Landsat images
band 6), which gives an approximation of the environmental temperature (Kalluri
et al. 2007, Fenoglio et al. 2009). As we were looking for a surrogate variable to explain
the temporal behaviour of HI, we used the Landsat band 6 BT (referenced as temper-
ature), which includes the actual surface temperature, the surface emissivity and the
atmospheric effect on it. In each subset scene that included Orán, two 1.44 km2 areas
were defined (figure 1), for which we calculated the mean and the variance values for
NDVI, NDWI and BT. The first area is located within the city and the second one
encompasses the native forest surrounding the city. Since Orán city is surrounded by
native vegetation and cultivated fields, we hypothesized that the environmental condi-
tions (NDWI, NDVI, BT) surrounding the city could be affecting the larval indices in
an indirect way. We randomly selected an area of native vegetation close enough to the
city, representing the environmental conditions that could be influencing the city and
the larval indices. Besides, the abundant vegetation surrounding the city could be act-
ing as a shelter for many mosquitoes. Since there were no important differences in the
characteristics of the area surrounding the city, the forest block used in our work could
have been placed in different locations with the same result. The NDVI is defined as

NDVI = (ρNIR − ρRED)/(ρNIR+ρRED), (1)

where ρRED is the radiance (in reflectance units) of a red channel near 0.66 µm and
ρNIR the radiance (in reflectance units) of a near-infrared channel around 0.86 µm
(Gao 1996). For L5 TM/L7 ETM+, ρNIR and ρRED correspond to band 4 (0.78–0.90
µm) and band 3 (0.63–0.69 µm), respectively. The NDWI uses two near-infrared
channels, one approximately at 0.86 µm and the other at 1.24 µm. It is defined as

NDWI = (ρNIR − ρSWIR)/(ρNIR + ρSWIR), (2)
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4258 E. L. Estallo et al.

where ρSWIR is the reflectance or radiance in a short-wave infrared wavelength chan-
nel (1.2–20.5 µm). For L5 TM/L7 ETM+, ρNIR and ρSWIR correspond to band 4
(0.78–0.90 µm) and band 5 (1.55–1.75 µm), respectively (Jackson et al. 2004).

2.2.3 Meteorological data. Daily maximum and minimum temperatures (◦C),
humidity (%) and rainfall (mm) were provided by the Orán City National
Meteorological Station (Servicio Meteorológico Nacional). The biweekly maximum
and minimum temperatures, humidity and the rainfall were calculated to match the
satellite temporal data.

2.3 Development of the models and data analysis

The degree of correlation between the HI and the satellite and meteorological variables
over a 15-day time lag, from 1 to 6 months (lags 1–12), was analysed. The 6-month
(lags 1–12) time lag was taken as the base for the analysis since longer time lags would
have no major influences over the annual dynamics of A. aegypti. Besides, for almost
4 months of the year, the vector activity is diminished (May to September).

The time-lagged independent variables that best correlated with the HIs were
selected (table 1). This allowed for an expedited forecast of the magnitude of such
indices in the future, by forecasting increases and decreases in vector activity based
on an environmental characterization that accounted for lag times in the independent
variables considered. Accordingly, vector control measures could be applied antici-
pating probable vector peaks, thus avoiding potential increases of A. aegypti. The
NDVI, BT and meteorological variable lags were obtained from the selected lags
for Orán by Estallo et al. (2008). In order to develop forecasting models, a multi-
ple linear regression analysis (stepwise backward elimination) was performed with
the set of variables using the highest correlated time lags, in relation to the HI val-
ues. Two forecasting models were developed and evaluated to predict the A. aegypti
HI for Orán: the SATMET model including both satellite (SAT) and meteorologi-
cal (MET) data and the SAT model including only the satellite variables. The data
set was divided into two subsets, from May 2001 to May 2004 to develop the mod-
els (n = 72 observations) and from May 2004 to May 2005 to evaluate them (n = 25
observations).

The HI was estimated using the equation

y = a0 + a1 × X1 + · · · + an × Xn + E, (3)

where y is the estimated Orán HI value, a0 is a constant, a1 to an are coefficients of the
independent variables X1 to Xn (see table 1) and E is the residual term.

We used Akaike’s information criterion (AIC) to rank candidate models. This tech-
nique identifies the most parsimonious model for the data by balancing the overall fit
of the model with the number of parameters included in it (Akaike 1974). Therefore,
the smallest value of AIC was considered as the standard to identify the best-fit model
(Brockwell and Davis 1991). Statistical analyses were conducted using R2.6 software
(2007). Because of the nature of the dependent variable, the HI was log-transformed
to normalize the residuals before using it to develop the models. Pearson correlation
coefficient (r) between the observed HI values and those forecast by the models was
used to evaluate the models. In addition, the predictive validity of the models was eval-
uated by using the root mean square error (RMSE) criterion. The smaller the RMSE,
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Effectiveness of NDWI for Modelling Aedes aegypti 4259

Table 1. List of independent variables (X 1–X 17) used to develop the models and the correspond-
ing time lag (1 time lag = 15 days).

Independent variables Number of lags
Correlation coefficient

(p < 0.05)

X 1 Mean NDVI of the forest 1 (15 days) 0.36
X 2 Variance of the NDVI of the

forest
1 (15 days) −0.15

X 3 Mean BT of the forest 3 (1.5 months) 0.53
X 4 Variance of the BT of the forest 2 (1 month) −0.28
X 5 Mean NDVI of the city 7 (3.5 months) 0.35
X 6 Variance of the NDVI of the

city
1 (15 days) 0.46

X 7 Mean BT of the city 3 (1.5 months) 0.57
X 8 Variance of the BT of the city 3 (1.5 months) −0.26
X 9 Precipitation 2 (1 month) 0.59
X 10 Maximum temperature 5 (2.5 months) 0.49
X 11 Minimum temperature 2 (1 month) 0.52
X 12 Maximum humidity 8 (4 months) −0.47
X 13 Minimum humidity 1(15 days) 0.49
X 14 Mean NDWI of the forest 1 (15 days) −0.40
X 15 Variance of the NDWI of the

forest
6 (3 months) −0.40

X 16 Mean NDWI of the city 7 (3.5 months) −0.41
X 17 Variance of the NDWI of the

city
1(15 days) −0.34

Notes: Satellite-derived variables: NDVI, normalized difference vegetation index; BT, bright-
ness temperature; NDWI, normalized difference water index.

the better the model in terms of the ability of the forecast (Hu et al. 2004). We used
the forecast of the previous year (May 2004 to May 2005) and calculated the RMSE of
25 observations. We also assessed multicollinearity, as measured by the variance infla-
tion factor (VIF), for the variables included in each developed model. All analyses
were performed with R2.6 and Statistica software.

3. Results

The RMSE obtained from the georeferencing was about 0.40 pixels. From the 17 vari-
ables (table 1) considered to develop the SATMET forecasting model, only 7 were
significant and were included in the multiple regression model: 2 meteorological
variables (precipitation (X9) and minimum humidity (X13)) and 5 satellite-derived
variables (the variance of the BT of the forest and the city (X4 and X8, respectively),
the variance of the NDWI of the forest and the city (X15 and X17, respectively) and
the mean NDWI of the city (X16)).

For the SAT forecasting model, 12 variables were considered, but only 8 were sig-
nificant and were therefore included in the model. These variables were the variance of
the NDVI of the forest (X2), the variance of the BT of the forest and the city (X4 and
X8, respectively), the mean NDVI of the city (X5), the mean BT of the city (X7), the
mean NDWI of the forest and the city (X14 and X16, respectively) and the variance of
the NDWI of the forest (X15).
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4260 E. L. Estallo et al.

Table 2. House index (HI) forecasts models obtained for Orán city, according to the regression
analysis performed considering lag variables.

Forecast
model Model expression

Model
error

SATMET ln(HI) = −2.6396 + 0.4199X4 + 0.2009X8 + 0.1684X9 +
0.1731X13 − 0.3066X15 − 0.5150X16 − 0.1498X17

0.4186

SAT ln(HI) = −2.6396 − 0.1641X2 + 0.5704X4 − 0.1766X5 −
0.1690X7 + 0.1883X8 + 0.3138X14 − 0.6968X15 − 0.9178X16

0.4486

Note: HI was log-transformed to normalize the residuals (ln(HI)).

The best regression coefficients, for both the SATMET and SAT forecast models,
correspond to the variance of the BT of the forest (X4), the variance of the NDWI
of the forest (X15) and the mean NDWI of the city (X16) (table 2). Both models
fit quite well: the SATMET forecast model with an adjusted coefficient of determi-
nation R2 = 0.82 (p < 0.0001; F = 47.10; AIC = 88.45) and the SAT forecast model
with an adjusted R2 = 0.79 (p < 0.0001; F = 34.98; AIC = 99.26). The SATMET fore-
cast model showed the lowest value of the AIC. Although the Pearson correlation
between the predicted and the observed HI for the validation data was higher for
the SAT forecast model (r = 0.64; p < 0.0001) than for the SATMET forecast model
(r = 0.57; p < 0.0001) (figure 2), the RMSE for both models was the same, 0.0411 for
the SATMET model and 0.0413 for the SAT model; therefore, both models according
to the RMSE have the same predictive power. No multicollinearity was found (<4).

4. Discussion

This study showed the effectiveness of NDWI as well as other satellite and meteoro-
logical data to develop forecasting models for the A. aegypti HI in a city of Argentina
where dengue is endemic. The SATMET and SAT models show a good association
between NDWI and BT to model HI, showing that these environmental variables
(NDVI and BT) have the highest model regression coefficients using the SATMET and
SAT developed models. Besides, it proved the complementarity between the indices
(NDVI and NDWI), which is in agreement with the views of Gao (1996) that NDWI
is a complementary index, not a substitute for NDVI.

The different time lags of the SATMET and SAT model variables are justified inso-
far as the influence of the environmental variables over survival and abundance of the
vector are given throughout the life cycle, which is known to vary considerably accord-
ing to these factors. Thus, the happenings in the environment prior to sampling may
have a significant effect, which suggests the need to consider time lags in predictive
models. For instance, when Dominguez et al. (2000) considered time lags in Córdoba
city, they found that climatic variables influenced the A. aegypti oviposition.

Accordingly, the NDWI is useful for modelling in order to predict the HI as well as
to monitor and control the dengue vector. The NDWI allows a better characterization
of the environment where the vector develops since it takes into account the vegetation
water content and indirectly measures soil humidity and precipitation (Breshears et al.
1997, Jackson et al. 2004), which are very important variables that regulate the biology
of the vector. Many ecologists have used field measurements of the foliar water content
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Figure 2. Observed and forecast house index for the SATMET forecast model (adjusted
R2 = 0.82; p < 0.0001; F = 47.10; AIC = 88.45) and the SAT forecast model (adjusted R2 = 0.79;
p < 0.0001; F = 34.98; AIC = 99.26). The RMSE for each model was the same: 0.0411 for the
SATMET model and 0.0413 for the SAT model; therefore, both models according to the RMSE
have the same predictive power.

and the foliar water potential as sensitive indicators of water status, which are also
important for the development of the immature stages of the vector. A similar index
was used by Brown et al. (2008) in attempting to identify clusters of sites with similar
mosquito vector communities. Brown et al. (2008) examined the association between
vegetation indices such as the NDVI and the disease water stress index (DWSI) and a
mosquito vector community. Although the NDWI is not a frequently used index, in
this work it is seen as a major indicator of the environmental climatic conditions than
simply using the NDVI.

In a previous project, Estallo et al. (2008) developed predictive models at a regional
level, using satellite and meteorological data to characterize the environment. Those
models did not include the use of the NDWI, a variable that would have allowed for a
better characterization of the environment. Therefore, we propose to develop new pre-
dictive, parsimonious and easy to apply models, at a local level for Orán, including the
NDWI, and test its effectiveness as a variable that allows for estimating the HI. Even
though Estallo et al. (2008) developed local models for two cities in the Argentine
northwest, those were descriptive and not predictive models, which allowed for a bet-
ter understanding of the system and the variables that might be affecting it. Those
models were not validated. This project validated the local models and calculated their
predictive power.

On the other hand, the local models developed by Estallo et al. (2008) include
both satellite and meteorological variables, whereas only one of the models of the
current project combines both kinds of variables (SATMET). The SAT model, which
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includes only satellite variables, could be easier to apply since there is no need for
meteorological data, which sometimes are hard to obtain or unavailable or simply not
recorded in remote areas.

In this project, we estimated only the HI, which is the most used larval index in addi-
tion to being the easiest for health agents to obtain. In the models developed by Estallo
et al. (2008), the authors considered the NDVI as an important estimator because veg-
etation is strongly associated with temperature, precipitation and soil properties. This
project focuses on the importance of the NDWI satellite environmental variable for
modelling A. aegypti HI and could be considered an extension of Estallo et al. (2008).

Dominant effects of the NDWI and the BT on HI forecast were significant in this
study at lags of 3 months for the variance of the NDWI of the forest (X15) and
3.5 months for the mean NDWI of the city (X16). Temperature proved to have a sig-
nificant effect, as reflected by the variance of the BT of the forest (X4) with a 1-month
time lag. NDWI showed the major model coefficient and therefore the major influence
as estimator and consequently the value of this variable as environmental indicator for
modelling A. aegypti HI. The vegetation index (NDVI) and BT were included in the
models developed by Estallo et al. (2008), where NDVI was demonstrated to be the
major factor to estimate the Breteau and HIs for Orán; yet, temperature also proved
to be a meaningful influence with the same time lags used in this work. Therefore,
temperature and NDWI conditions recorded in an area determine the vector popula-
tion growth. Temperature is the abiotic factor that has received the most attention as a
modulator of A. aegypti bionomics, as well as the larval indices, as at higher tempera-
ture there is a higher rate of reproduction and hatching, which would result in a greater
number of mosquitoes per breeding site (Jetten and Focks 1997, Tun-Lin et al. 2000).

Wu et al. (2007) evaluated the impact of weather variability on the occurrence
of dengue fever in a city of Taiwan using autoregressive integrated moving average
(ARIMA) models. The best-fit ARIMA models showed that dengue incidence was
negatively associated with monthly temperature deviation and relative humidity, both
with their most prominent effects at a time lag of 2 months. Our SATMET forecast
model included as significant climatic variables rainfall (X9) at a lag of 1 month and
the minimum temperature (X13) at a lag of 15 days for Orán. Rainfall is important in
the transmission of mosquito-borne diseases because mosquitoes require water for the
larval and pupal development. However, both humidity and rainfall should be used to
model mosquito vector population dynamics. Quantity, timing and pattern of rainfall
will affect mosquito larval habitats (Lindsay and Mackenzie 1996).

Considering that there are many regions in Argentina where meteorological data
are not available, SATMET and SAT models developed here explore the potential
application of satellite data. The SAT forecast model did not include meteorologi-
cal variables, other than those obtained from satellite data, the NDWI and the BT
being the ones that most contributed to explain the response variable fluctuation in
the model. Our results highlight that the variables with the highest influence, in both
the SAT and the SATMET models, were the temperature and the NDWI, suggest-
ing that these are important variables that should be taken into consideration when
developing a predictive model.

According to our results, satellite data are useful variables to characterize the envi-
ronment and to generate models that allow forecasts of, in this case, the A. aegypti HI.
While these kinds of models could be used in other northwestern cities of Argentina,
which share similar climatic features, we recommend validating them in the new areas
prior to their application. Therefore, we suggest applying remote sensors, especially in
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areas where the unavailability of meteorological data precludes monitoring this vector.
This type of research is needed to help the authorities to monitor and control the
diseases accurately. Remote sensing provides readily usable and relatively inexpensive
data for large areas. Therefore, such data can be used to accurately model and predict
diseases and vector outbreaks and may be helpful to assist in the decision making of
health authorities.
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