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ABSTRACT. Forecasting models were developed for predicting Aedes aegypti larval indices in an
endemic area for dengue (cities of Tartagal and Orán, northwestern Argentina), based on the Breteau and
House indices and environmental variables considered with and without time lags. Descriptive models were
first developed for each city and each index by multiple linear regressions, followed by a regional model
including both cities together. Finally, two forecasting regional models (FRM) were developed and
evaluated. FRM2 for the Breteau index and House index fit the data significantly better than FRM1. An
evaluation of these models showed a higher correlation FRM1 than for FRM2 for the Breteau index (r 5 0.83
and 0.62 for 3 months; r 5 0.86 and 0.67 for 45 days) and the House index (r 5 0.85 and 0.79 for 3 months; r
5 0.79 and 0.74 for 45 days). Early warning based on these forecasting models can assist health authorities to
improve vector control.
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INTRODUCTION

In the Americas, dengue fever and dengue
hemorrhagic fever are the major public health
problem and the most important vectorborne
viral diseases, primarily in tropical and subtrop-
ical areas. The four dengue serotypes are main-
tained in cycles involving humans and the Aedes
aegypti (L.) vector (Rigau-Peréz et al. 1998;
WHO 2000, 2007), a day-biting urban mosquito
that mainly feeds on humans (Gubler and Kuno
1997, Rodhain and Rosen 1997, Stein et al. 2002).

Environmental conditions strongly control the
distribution and abundance of Ae. aegypti
(Chistophers 1960; Rueda et al. 1990; Focks et
al. 1993a, 1993b) and, thus, the transmission of
dengue viruses (Gubler 1988, Patz et al. 1996). In
urban areas, any type of water-holding container,
such as discarded bottles, tires, and water
cisterns, with clean water is a good larval habitat.
These man-made habitats are abundant in urban
settlements where the food supply (blood) for
gravid female mosquitoes is abundant. In these
environments, climatic variables such as temper-
ature, humidity, and rainfall significantly influ-
ence mosquito development and survivorship

(Chistophers 1960; Focks et al. 1993a, 1993b;
Hopp and Foley 2001, 2003).

While a vaccine is under development, the only
currently available method of prevention and
control of dengue and dengue hemorrhagic fever
involves combating the vector mosquitoes at both
larval and adult stages (Lloyd et al. 1992, WHO
2002, Reiter et al. 2003, Guzmán et al. 2006).
Although only Ae. aegypti females are directly
involved in dengue transmission, entomological
surveillance has been based on larval indices,
which have been used for over 60 years to
estimate mosquito population densities and
determine the risk of dengue transmission
(PAHO 1994, WHO 1997). The most widely used
indices are the House index (percentage of houses
positive for Ae. aegypti larvae), and the Breteau
index (number of containers positive for Ae.
aegypti larvae per 100 houses) (Ibañez Bernal and
Gómez Dantés 1995, Tun-Lin et al. 1996, Focks
2003, Mercado Hernández et al. 2003).

The objective of this work was to develop
forecasting models of larval indices in an area
endemic for dengue disease in Argentina. Assum-
ing Ae. aegypti larval indices are directly related
to adult densities, it would be extremely advan-
tageous to develop a vector abundance early
forecasting system based on indices used to
predict larval abundance. Our models were
derived from analyses of House and Breteau
indices estimated in the study area and climatic
and environmental variables obtained from ter-
restrial and satellite observations.

MATERIAL AND METHODS

Breteau and House indices

Entomological surveillance data were recorded
by the National Coordination for Vector Control
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of the National Ministry of Health in two
subtropical, northwestern Argentinean cities:
San Ramón de la Nueva Orán City, hereafter
Orán City, (23u089S, 64u209W, elevation 337 m)
and Tartagal City (22u329S, 63u499W, elevation
463 m) (Fig. 1). Orán City is 140 km away from
Tartagal City. Orán and Tartagal cities are
located 270 km and 350 km northeast of Salta
City, the main city of Salta Province. The
National Coordination for Vector Control re-
corded monthly entomological data from Orán
City, and bimonthly data from Tartagal City.
The Breteau index and House index recorded
between January 2001 and May 2005 were used
to develop our models.

Data obtained from remote sensors

The satellite-derived variables were extracted
from Landsat 5 (L5 TM) and Landsat 7 (L7
ETM+) path/row 230/76 satellite images (Fig. 1).
A set of 52 images for Tartagal City and a set of
48 images for Orán City, both spanning January
2001 to May 2005, were selected from the
National Commission of Spatial Activities
(CONAE) catalog. Images were georeferenced
and coregistered and then subdivided into areas
of interest of 144 km2 for Tartagal City and 225
km2 for Orán City (Fig. 1).

Since our time-series data cover about 4.5 years
with images from two different sensors (Landsat
5TM and 7ETM+) and a range of acquisition
dates, each subset was calibrated using different
coefficients on ENVI 4.2 software (ENVI RS

2004). The dynamic range of Chandler and
Markham (2003) was used to calibrate L5 TM
images, whereas the header coefficient of each
image was used to calibrate those from L7
ETM+.

Two 1.44 km2 areas were defined in each
subset, one including the city and the other
encompassing the native forest surrounding the
city. Using ENVI, we extracted the mean and
variance of brightness temperature and the
Normalized Difference Vegetation Index (NDVI)
from these focal areas, resulting in 8 environ-
mental variables: mean brightness temperature
and NDVI, and variance for the brightness
temperature and NDVI for each city and forest
area. These variables are widely used to charac-
terize the environment. NDVI is calculated with
the near-infrared band (band 4) and the red band
(band 3) of the Landsat satellite images, and it is
an important estimator because vegetation de-
pends on temperature, precipitation, and soil
properties. Therefore, the NDVI, which measures
vegetation greenness, is a proxy for soil moisture
and land-surface wetness where areas with
vegetation usually have NDVI . 0. On the other
hand, brightness temperature is also a good
estimator (Landsat images band 6) that gives an
approximation of environmental temperature.

To produce a complete time-series data set, a
biweekly raster grid was developed from the first
15 days of January 2001 to the first 2 weeks of
May 2005. Images were located in the raster
according to acquisition date, and then a spline
cubic interpolation was performed for the vari-

Fig. 1. Map of Argentina showing Salta Province and Orán and Tartagal cities, a 144-km2 subset of Landsat
satellite image path/row 230/76 (April 27, 1997) for Tartagal City and surrounding areas (A), and a 225-km2 subset
of Landsat image path/row 230/76 (November 6, 2003) for Orán City and surrounding areas; Bermejo river to the
right side (B). Environmental information was taken from the areas under the black squares.
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ables NDVI and brightness temperature using
ENVI. Larval indices were also added to the
raster grids and interpolated.

Daily meteorological data for both cities were
obtained from the National Meteorological
Service: precipitation (mm), maximum and min-
imum temperature (uC), and maximum and
minimum humidity (%). From each 15-day
period, we used the accumulated precipitation
and the maximum and minimum values of
temperature and humidity. We found that mean
temperature and humidity correlated with mini-
mum and maximum temperature and humidity;
therefore we only used the latter in developing the
models.

Development of models and data analysis

Local models were first developed for each city
and each index as descriptive models to under-
stand how the system works at different scales.
Assuming that both studied cities are relatively
close, with similar environmental conditions,
vegetation, and elevation, a regional model was
developed considering both cities together. The
regional model would thus provide a regional
perspective for the northwestern Argentina en-
demic dengue area. A forecasting regional model
(FRM) was then developed and evaluated to
predict the larval indices. The predicted larval
indices could then be used to manage possible
dengue outbreaks by predicting peaks of abun-
dance of adult Ae. aegypti for the whole study.

The general model was based on the following
equation:

y ~ a0 z a1X1 z :::anXn ,

where y is the estimated index value (Breteau
index or House index), a0 is a constant, and a1 to
an are coefficients of environmental variables X1

to Xn (Table 1). Once the model was developed,

the correlation coefficient (r) was calculated
between modeled and observed data.

Because Ae. aegypti development is mainly
affected by weather conditions (Service 1993,
Ludueña Almeida and Gorla 1995, Domı́nguez et
al. 2000), we strove to add realism to the models
by considering all environmental variables with
and without lags of 15 days (lags 1–12, covering 6
months). Correlations between the 12 lags and
each observed index for each city were carried out
to select the best time lag for each variable, which
was then used to develop the local models. For
the regional models, the mean correlation value
for each time lag, considering both cities together,
was calculated, including the best mean correla-
tion value in the models (Table 2).

Based on the set of descriptive regional models
with the best fit, we also developed two FRMs
using variables with time lag. In the first FRM,
the same variables selected for the descriptive
regional model with time lag were included, while
a second FRM was developed that took into
account the stepwise variable selection.

Multiple linear regression analyses were per-
formed using INFOSTAT software (2002). Due
to the nature of the dependent variables, Breteau
and House indices were log-transformed to
normalize the residuals before use in developing
selected models.

The 8 satellite-derived environmental variables
(X1–X8) and the 5 meteorological variables (X9–
X13) were included in each regression analysis to
develop the model. The variables were selected to
a better statistical fit, so the ones that least
contributed to explain the model (P . 0.05) were
removed stepwise according to the tolerance and
Mallow’s Cp values for each variable. The
complete data set, i.e., from January 2001 to
May 2005, was used for the descriptive models.

Table 1. List of independent variables (X1 to X13) used
to develop the models.

Independent
variable Definition

X1 Mean NDVI1 of the forest
X2 Variance of the NDVI of the forest
X3 Mean forest brightness temperature
X4 Variance of the forest brightness temperature
X5 Mean city NDVI
X6 Variance of the city NDVI
X7 Mean city brightness temperature
X8 Variance of the city brightness temperature
X9 Precipitation
X10 Maximum temperature
X11 Minimum temperature
X12 Maximum humidity
X13 Minimum humidity

1 NDVI, Normalized Difference Vegetation Index.

Table 2. Variables with the best time lag (lag 1 to 12)
considered in the development of the local and regional

models for Tartagal and Orán cities
(northwestern Argentina).

Variables

Breteau index
(local)

House index
(local)

Regional
model
lagsTartagal Orán Tartagal Orán

X1 1 4 1 1 1
X2 1 1 12 1 1
X3 4 3 4 3 3
X4 8 2 8 2 2
X5 1 9 2 7 1
X6 1 1 8 1 9
X7 4 3 3 3 3
X8 3 3 3 3 3
X9 2 2 1 2 2
X10 6 4 5 5 5
X11 2 1 2 2 11
X12 1 1 9 8 8
X13 9 9 9 1 9
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However, for the forecasting models, the data set
was divided into two subsets: the subset from the
period January 2001 to April 2003 was used to
develop the model, and the subset from the
period May 2003 to May 2005 was used to
evaluate the model (i.e., the training and evalu-
ation data sets, respectively; Brzeziecki et al.
1993; Guisan et al. 1998, 1999; Guisan and
Zimmermann 2000; Zimmermann and Kienast
1999). To evaluate the forecasting models, we
measured the correlation between the field data
and the indices calculated by each model.

RESULTS

Descriptive local models

The models without time lag for Orán and
Tartagal cities showed the same fit for Breteau
and House indices (R2 5 0.79 and 0.83, respec-
tively; P , 0.0001). Ten and nine variables were
included for the Breteau index models for
Tartagal and Orán cities, respectively. The House
index models included 6 variables for Tartagal
City and 7 for Orán City. The models for the
Breteau and House indices for both Tartagal and
Orán cities included brightness temperature,
NDVI, and temperature variables (Table 3).
The eliminated common variable in all local
models was the minimum humidity.

All local models developed with time lag
showed a good fit, although, in several cases,
they had low R2 values. The Breteau index model
for Orán City with time lag (R2 5 0.89; P ,
0.0001) fit better than the same model without
time lag (R2 5 0.79). However, the fit for the
Breteau index model for Tartagal City was lower
with time lag (R2 5 0.74; P , 0.0001). The fit also
decreased for the House index models from 0.83
without time lag to 0.73 and 0.8 with time lag for
Orán and Tartagal cities, respectively (P ,
0.001). However, high correlations (0.87 # r #
0.95; P , 0.05) were obtained between the
observed data and values estimated by the
models.

The Breteau index models with time lag
included 7 and 12 variables for Tartagal and
Orán cities, respectively (Table 3). The Breteau
index model for Orán City included almost all
variables. However, the common variables for
both models corresponded to NDVI, brightness
temperature, precipitation, temperature, and hu-
midity. Eight variables were included in the
House index local models with time lag for both
cities (Table 3) corresponding to NDVI and
brightness temperature. The variances of the
forest and city brightness temperature were the
only two variables included in all local models
with and without time lag. Therefore, these
variables were present in all descriptive local
models. T
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Descriptive Regional Models

Both cities were considered together to develop
regional models, and these were analyzed with
and without time lag. The Breteau index model fit
better with time lag (R2 5 0.67 and 0.63 with and
without time lag, respectively; P , 0.0001).
Additionally, the Breteau index model developed
using time lag variables fit well with observed
field data (Fig. 2), as did the curve in the House
index model with time lag (Fig. 3), although the
fit was higher in the House index model without
time lag (R2 5 0.63 and 0.66 with and without
time lag, respectively; P , 0.0001). The Breteau
index model without time lag included all
variables, but only 10 variables when time lags
were applied (Table 4). Twelve variables were
included in the House index models without time
lag, and 9 variables were included in the House
index models with time lag. The mean forest
NDVI, mean forest brightness temperature, mean
and variance of city NDVI, variance of city
brightness temperature, precipitation, maximum
temperature, maximum humidity, and minimum
humidity were common for both House and
Breteau regional models (Table 4).

Forecasting Regional models

Taking into account the good fit obtained for
the descriptive regional models with time lag
(Figs. 2 and 3), the same variables were included
to develop FRM1 (Table 5). The FRM2 was
developed by considering the complete set of 13
variables and removing variables stepwise, which
provided a set of variables with better statistical
fit.

For the Breteau index, FRM2 fit significantly
better than FRM1 (R2 5 0.66 and 0.60, respec-
tively; Fig. 4), including 9 and 10 variables,
respectively. The common variables were NDVI,
brightness temperature, precipitation, tempera-
ture, and humidity (Table 5).

Again, FRM2 for the House index fit signifi-
cantly better than FRM1 (R2 5 0.59 and 0.54,
respectively; Fig. 5). The common variables were
the NDVI, precipitation, temperature, and hu-
midity. Considering all the FRMs, only 3
variables were included in all models: precipita-
tion, maximum temperature, and minimum
humidity (Table 5).

The potential forecast power for FRMl1 and
FRM2 was evaluated by estimating larval indices

Fig. 2. Breteau index regional model (BI-RM) for Tartagal and Orán cities with (R2 5 0.67, F 5 37.28, P ,

0.0001) and without (R2 5 0.63, F 5 28.22, P , 0.0001) lag.

Fig. 3. House index regional model (HI-RM) for Tartagal and Orán cities with (R2 5 0.63, F 5 37.28, P ,

0.0001) and without (R2 5 0.66, F 5 31.31, P , 0.0001) lag.

372 JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION VOL. 24, NO. 3



with these models and correlating the observed
data with data estimated by the respective
models. The indices recorded from May 2003 to
May 2005 were correlated with predicted values
over two short periods, 3 months and 45 days.
For the Breteau index, a better correlation was
observed for FRM1 than FRM2 in both periods
(r 5 0.83 and 0.62 for 3 months; r 5 0.86 and 0.67
for 45 days; P , 0.05). For the House index,
again a higher correlation was also observed for
FRM1 than FRM2 in both periods (r 5 0.85 and
0.79 for 3 months; r 5 0.79 and 0.74 for 45 days;
P , 0.05). Although FRM2 showed a better fit,
the potential power for predicting the larval
indices was higher for FRM1, which could be
an excellent tool as a predictive model of larval
index. This model included the same variables as
the descriptive regional model with the time lags
considered according to Ae. aegypti biological
characteristics, thus providing a better biological
understanding of these mosquitoes.

DISCUSSION

Sixteen models were developed in this work,
and the variance of the city brightness tempera-
ture was present in all but FRM2. Other
important variables in decreasing frequency of
appearance in the models were: the variance of
the city NDVI in 14 models, the mean city NDVI
and precipitation in 13 models, the mean forest
brightness temperature and the variance of the
forest brightness temperature in 12 models, and
maximum temperature and minimum humidity in
11 models. Undoubtedly, climatic variables,
particularly the variance of city brightness
temperature, the variance of forest brightness
temperature, precipitation, maximum tempera-
ture, and minimum humidity, have a significant
role in the development of Ae. aegypti and, thus,
an effect on larval indices.

Domı́nguez et al. (2000) studied the fluctuation
of Ae. aegypti populations in Córdoba City,
located in central Argentina, which is character-
ized by a temperate climate. Their study corre-
lated mosquito density with mean temperature
and precipitation. They found a high correlation
(r 5 0.81; P , 0.05) for both variables when
analyzed with a time lag of a month. We found a
similar relationship in the present work when we
used a 1 month time lag for precipitation and
temperature in the forest brightness temperature
to develop the models. However, we found that
the most suitable lag for the variance of city
brightness temperature obtained here was 1.5
months.

Precipitation is important in the transmission
of mosquitoborne diseases because mosquitoes
require water for the aquatic larval and pupal
breeding stages. However, both precipitation and
temperature should be used to model mosquitoT
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vector populations. Quantity, timing, and pattern
of precipitation will affect mosquito larval habi-
tats (Lindsay and Mackenzie 1996), but temper-
ature also affects mosquito population growth
and pathogen replication rates (Rose et al. 2000).

A complete monitoring program for a mosqui-
toborne disease should include predictions of
vector population size (Eldridge 1987), which
may be estimated from the models developed
here. Assuming that the entomological data,
satellite images, and meteorological data can be
currently obtained from the National Coordina-
tion for Vector Control of the National Ministry
of Health, CONAE, and the National Meteoro-
logical Service, respectively, implementation of
the predictive model of larval index is quite
possible. The extra requirement for our Ministry
of Health would be a good computer system, and
the appropriate software to process the images,
and also a technician to process the images and
generate the model. Early warning based on the
predictive model of larval index is a realistic tool
that may assist health authorities to improve
vector control and diminish the risk of a dengue
outbreak in northwestern Argentina.
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Públ 36:627–630.

Tun-Lin W, Kay BH, Barnes A, Forsyth S. 1996.
Critical examination of Aedes aegypti indices: corre-
lation with abundance. Am J Trop Med Hyg 54:
543–547.

WHO (World Health Organization). 1997. Dengue
haemorrhagic fever: diagnosis, treatment prevention
and control. Geneva, Switzerland: World Health
Organization [accessed March 5, 2007]. Available
from: http://www.who.int/csr/resources/publications/
dengue/itoviii.pdf.

WHO (World Health Organization). 2000. Dengue and
dengue haemorrhagic fever. WHO report on global
surveillance of epidemic-prone infectious diseases.
Document WHO/CDS/CSR/ISR/2000.1. Geneva,
Switzerland: World Health Organization [accessed
March 10, 2007]. Available from: http://www.who.
int/csr/resources/publications/surveillance/dengue.pdf.

WHO (World Health Organization). 2002. Dengue and
dengue haemorrhagic fever 117. Geneva, Switzerland:
World Health Organization [accessed March 12,

SEPTEMBER 2008 MODELS FOR PREDICTING AEDES AEGYPTI LARVAL INDICES 375



2007]. Available from: http://www.who.int/mediacentre/
factsheets/fs117/en/print.html.

WHO (World Health Organization). 2007. Better
environmental management for control of dengue.
Geneva, Switzerland: World Health Organization

[accessed May 6, 2007]. Available from: http://www.
who.int/heli/risks/vectors/denguecontrol/en/print.html.

Zimmermann NE, Kienast F. 1999. Predictive mapping
of alpine grasslands in Switzerland: species versus
community approach. J Veg Sci 10:469–482.

376 JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION VOL. 24, NO. 3


