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Abstract

We present the first results of a simple numerical model of rodent population dynamics and viral infection for Junin virus, eti-
ologic agent of Argentine hemorrhagic fever (AHF), in its host,Calomys musculinus. In contrast to the more common statistical
approach, the model incorporates satellite-derived environmental data in a causal approach. In addition, the model incorporates
specific biological characteristics of the host, such as birth rate and longevity. Theoretical and actual rodent population densities
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re compared with several years of capture data at locations on the Argentine pampas. The model appears to be a g
imulating dynamics of populations using remotely sensed data. Results are in agreement with field data showing
opulation densities during the autumn in most localities. The differences between simulated population densities an
erved values indicate that, although computer simulation is useful to obtain some aspects of population dynamics, imp
hould be introduced in order to generate more robust results.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Satellite data have become important sources for
variety of biological and bio-geographical studies.

∗ Corresponding author.
E-mail address:scavuzzo@cett.conae.gov.ar (C.M. Scavuzzo).

Depending on the way in which remote sensing ca
combined with ecological models, these broad ra
of applications has been grouped in four catego
(Plummer, 2000). For example, considering just t
spatial scale (running from global to species lev
remotely sensed data provides estimates of vari
required to drive ecological process models of
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dictions from global or regional circulation models as
boreal forest (BOREAS), savannah (Hapex–Sahel) or
tropical forest (LBA). Also in a broad scale, models of
climatic change; primary production models based on
vegetation indexes (Seaquist et al., 2003) have been
developed. At community level, statistical classifica-
tion of satellite data produces land cover and land use
information, or also can drive models of deciduous
forest dynamics (Birky, 2001). Finally, at species level,
most of the works are oriented to analyze through mul-
tivariate statistic different variables (vegetation, air and
surface temperature, humidity, and elevation) to access
species distribution models and maps (Guisan and
Zimmermann, 2000).

“Landscape epidemiology” is a relatively new in-
terdisciplinary approach that involves the characteri-
zation of eco-geographical areas where diseases are
transmitted. Landscape epidemiology is a second gen-
eration application of remotely sensed data where the
target (the vector or reservoir host) can not be seen di-
rectly with satellite images. It is an holistic approach,
which takes into account the relationships and inter-
actions between the different elements of ecosystems
under the assumption that the biological dynamics of
the population of a host or vector are driven by land-
scape elements such as temperature and vegetation. A
principal goal of this discipline is to develop risk maps
for specific diseases to aid the formulation of a “health
early warning system” (HEWS). There are several pio-
neering examples of the application of remotely sensed
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et al., 1999). The incidence of AHF varies among ge-
ographic areas among seasons and from year to year.
JUNV is naturally maintained and spread by its reser-
voir the dry lands vesper mouse,Calomys musculi-
nus(Sabattini et al., 1977). The known reservoir dis-
tribution includes central and northwestern Argentina
(Redford and Eisenberg, 1992), an area much larger
than endemic area of AHF. JUNV infection inC. mus-
culinusis highly focal and varies among localities, sea-
sons, and years. In its reservoir, the virus produces a
chronic infection that is usually asymptomatic and re-
sults in shedding of virus in urine, feces, and saliva.
Nevertheless, acute infection with production of an-
tibody and subsequent viral clearance may occur in
some individuals. Intrauterine infection from persis-
tently infected females has a detrimental effect on the
offspring (Sabattini et al., 1977; Medeot et al., 1993;
Vitullo et al., 1987; Vitullo and Merani, 1988). The
maintenance of virus in nature occurs principally by
horizontal transmission between adult males (Mills et
al., 1992a). The principal mechanism of human infec-
tion is by inhalation of infectious aerosolized particles
of rodent excreta. Other potential routes of entry in-
clude direct contact with mucous membranes or broken
skin, or ingestion (Enria et al., 1999).

Climatic factors determine both temporal and spatial
variation in the parameters that influence the dynamics
of rodent populations (De Villafañe et al., 1988; Mills
et al., 1991; Bonaventura et al., 1992; Bilenca, 1993).
The dynamics of host populations determines the in-
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ata to vector-borne diseases (Linthicum et al., 1987
ogers and Randolph, 1991; Pope et al., 1992; W
t al., 1992; Rogers and Randolph, 1993; Hay e
996; Rogers et al., 1996; Beck et al., 1997, 2000).

Argentine hemorrhagic fever (AHF) is a rode
orne viral infectious disease that occurs in the
id pampas of central Argentina. The etiologic age

unin virus (JUNV), a member of the familyArenaviri-
ae. AHF is a severe systemic disease with hem
hagic and neurological manifestations. An impor
pidemiological characteristic of AHF is the progr
ive geographic extension into new areas and the d
earance of the disease from the oldest areas (Maiztegui
t al., 1986). The first cases were recognized in Bue
ires province in the 1950s, when the disease was

ted to an area of 16,000 km2. The endemoepidem
egion has spread to Córdoba, Santa Fe and La Pam
rovinces, now covering an area of 150,000 km2 (Enria
roduction, survival, or disappearance of a patho
t a given site. In the case of JUNV, it was propo

hat both a critical host population density and a de
ined proportion of young susceptible individuals
eeded in order to assure horizontal transmission o
irus in the reservoir population (Sabattini and Cont
iani, 1980). For other rodent-borne pathogens, e
ost species may develop its own adjustment me
isms to environment variations (physiological adj
ents) that, together with intrinsic characteristics o
opulation (density and structure), also modify po

ation parameters including reproductive rate, ave
ife time, etc. (Polop and Sabattini, 1993).

The conditions associated with high risk of rode
orne disease outbreaks can be monitored from re
ensors and, retrospectively, be related with rese
opulation characteristics and the resulting human
ase cases. Environmental information from rem
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sensors can be an important tool for developing in-
dicators, risk maps, and population models (Mills and
Childs, 1998). These models can contribute to public
health decision making by identifying specific times
and locations that may pose a disease threat.

Greenness indexes integrate environmental infor-
mation as temperature, precipitation, and soil proper-
ties. One of the most used index derived from remote
sensed data is the normalized difference vegetation in-
dex, (NDVI; Rouse et al., 1974) which is calculated
as a ratio between the near infrared and red regions of
the electromagnetic spectrum. The NDVI values rank
from −1.0 to 1.0, where an increasing positive value
indicates increasing green vegetation.

Investigators using remotely sensed data in studies
of rodent-borne disease have successfully developed
predictive models for risk areas of hantavirus pul-
monary syndrome (HPS;Glass et al., 2000), and for
Sin Nombre virus infection in deer mice (Boone et
al., 2000). In both cases, an statistical approach was
used.Boone et al. (2000)demonstrated a statistical
relationship among the prevalence of infection in
rodents at 144 field sites and environmental conditions
such as vegetation type and density, elevation, slope,
and hydrological features. Remotely sensed data were
used to obtain a vegetation type map based on the
normalized difference vegetation index, derived from
Landsat.Glass et al. (2000)also derived a statistical
relationship relating HPS case sites to precipitation,
elevation, and the six non-thermal Landsat bands. In
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heuristic. For example, simulating the effects of mod-
ifying environmental parameters, or those parameters
describing the biological characteristics of host species,
could lead to insights into both the ecological and vi-
rological aspects of host–virus dynamics.

Because of its extensive area, economic importance,
and high population density (Maiztegui et al., 1986),
the AHF endemic area is particularly suitable for the
application of the broad scale monitoring offered by
space-based sensors. In this paper, we present an initial
version of a model ofC.musculinuspopulation dynam-
ics and viral infection, which uses remotely sensed data
in a causal approach in contrast to the more common
statistical approach. In addition, we present theoretical
analyses and comparisons with experimental field data.

2. The model

The population model presented here is mainly
based on the equations proposed byKirchner and Roy
(1999)describing the temporal dynamics of a single
species population. That paper presents a theoretical
study of the effects of longevity on the trajectory of
populations of infected and non-infected individuals.
It suggests that, under certain conditions, a longer life
span is less advantageous for the host population. This
theoretical approach has several similarities with the
association between JUNV andC.musculinus.For this
reason we usedKirchner and Roy (1999)model as a
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his case, the relationship with the remotely sen
ata (the original Landsat bands) was direct.

Recently, a human HPS risk algorithm allowed
dentify sites showing meaningful ecological diff
nces between high and low risk conditions. In s
f the strong relationships found among different v
bles as HPS risk of sites, the abundance and po

ion structure of the reservoir, and the values of Lan
ands; the factors that link this those variables rem

o be determined (Glass et al., 2002a,b). This fact en
ouraged us to look for a different approach, wh
ight explain that kind of relationship.
The use of causal models seems to be a less effi

ethod to develop predictive tools for operational
n the public health sector. Nevertheless, this com

entary approach, which incorporates remote sen
n the development of numerical models of rodent p
lation dynamics and virus transmission, might be v
tarting point for our modeling.
Kirchner and Roy’s (1999)model assumes the ex

ence of two sub-populations, “X” representing the non
nfected rodents and “Y” the infected rodents. Both “X”
nd “Y”, are expressed as a fraction of the ecosys
arrying capacity for the species. The sources and
or each class are schematically presented inFig. 1. The
emporal equation for the non-infected rodents is:

dX

dt
= α(1 − N)X

︸ ︷︷ ︸

birth

−βXY
︸ ︷︷ ︸

infection

−X

τ
︸︷︷︸

dead

(1)

nd for the infected population

dY

dt
= βXY − Y

τm
(2)

hereX is the non-infected host population as a frac
f carrying capacity,Y the persistently infected ho
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Fig. 1. Sources and sinks of each sub-population classes in the model. Dashed arrows show outputs and full arrows means input in each
sub-population.α: Birth rate,τ: mean life span,γ: immunization rate,X: proportion of non-infected sub-population,Y: proportion of infected
sub-population,Z: proportion of immunized sub-population (all in terms of carrying capacity),N: total population (X+Y+Z),X/τ: non-infected
host mortality rate,Y/τ: infected host mortality rate andZ/τ: immunized mortality rate.

population as a fraction of carrying capacity andN is the
totalC.musculinuspopulation, in this caseN=X+Y. In
this non-dimensional approach the maximum possible
value for “X” or “Y” is 1. Then 1−N= 1− (X+Y) is the
free fraction of the carrying capacity (available to be
occupied by new births).τ (tau) is the maximum “mean
life span” (equal for both, infected, and non-infected ro-
dents) producing a non-infected host mortality rateX/τ,
α (alpha) the potential (per capita) reproductive rate in
absence of carrying capacity constrains,β (beta) the
average number of non-infected hosts that an infected
host can infect during its lifetime, the termβXY the
infection rate andm in the general case accounts for
differential mortality rate. In the case ofC. musculinus
it is equal to 1, because infection with JUNV is assumed
to have no negative effect on the rodent. Eqs.(1) and
(2) can be discretized and then solved numerically in a
simple finite differences scheme. In this process, IDL
language was used and the time step was 1 day.

It is important to note that births are not included
in Eq. (2) because intrauterine infection from persis-
tently infected females has a detrimental effect on the
offspring as was stated above.

Laboratory studies ofC. musculinusinfection with
JUNV revealed that some individuals develop an im-
munizing infection. These immunized rodents cannot
infect other non-infected rodents and they cannot be re-

infected. To include this new rodent class in the model,
we add an equation describing the population of im-
munized hosts, “Z”, including an immunization rateγ
(gamma), as follows:

dZ

dt
= γY − Z

τm
(3)

2.1. Model parameters

To improve our simulation, we used parameters for
C. musculinusthat were extracted from our database
and from the literature:τ was obtained fromDe
Villafañe and Bonaventura (1987); α derived fromDe
Villafañe (1981)andHodara et al. (1984); β obtained
from data included inSabattini et al. (1977)and
information onγ values was obtained fromSabattini
et al. (1977)andMills et al. (1994). The values used
to simulate population growth of the host of JUNV are
presented inTable 1.

Because our goal is to develop an alternative method
for using satellite information in characterizing param-
eters related to rodent-borne diseases, we are interested
in identifying those parameters fromTable 1that could
be associated with environmental conditions that can
be monitored using remote sensors. We selected NDVI
derived from the AVHRR instrument on board, the
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Table 1
Comparison of originalKirchner and Roy (1999)andC. musculinus
model parameters

Parameters Kirchner and Roy Calomys musculinus

τ 1 7 months
α 10 11, 7 births per life span
β 30 12 per life span
m 5 1
γ – 0.12 per month

C. musculinusmodel parameters were obtained from the literature
cited on the text.

NOAA satellite as a remotely sensed variable repre-
sentative of the environmental condition. NDVI was
chosen because this greenness index integrates envi-
ronmental information, which influence biological pa-
rameters of host populations and, indirectly, measures
variables such as the quantity and quality of refuge and
food (Súarez-Seoane et al., 2002).

Different biological aspects ofC. musculinushave
seasonal changes, in some cases they have a direct
relationship with vegetation variables: for example,
changes in social structure ofC.musculinusduring har-
vest and plowing season have been repeatedly reported
(Crespo et al., 1970; Polop et al., 1982) due to the in-
crease of death by agricultural machines, the increase
of predation by birds and related to changes in plant
species composition (Busch et al., 2000). The struc-
ture of the populations shows a growing feature with
young individuals as most important group in Autumn
(April), but is less evident later in the year. A decrease in
the mean body weight of rodent trapped (De Villafañe
et al., 1988), and a high number of “missed” rodents
in closed plots during the winter (Polop, unpublished
data) suggest the mean life span inC. musculinusis
shorter in this season.

Also the reproductive cycles inC. musculinusrun
from September to June (Mills et al., 1992a,b), showing
a seasonality of the pregnancy prevalence that decrease
after June (De Villafañe et al., 1988).

With this knowledge, we assume in a parsimony way
a linear dependence of both the reproductive rate “α”
a
d ose
t en
N d on
e and
m ta

were obtained from decadal (10 days) series available
at “daac.gsfc.nasa.gov”. For each locality where we ran
the model, we used NDVI image series of a single pixel
value (8 km× 8 km of resolution) corresponding with
its geographical coordinates. Hereafter, when we refer
to localities we are speaking about the rural agricul-
tural area near to small towns with a typical radius of
about 2 km. Each locality’s rural environmental condi-
tions are described by a pixel. To feed the model, an
interpolation of decadal data is used in order to obtain
an NDVI value corresponding to each time step. In the
model, these NDVI values result in “α”and “τ” values
within the limits defined by laboratory and field values
(Table 1), ranging from 0.3 to 1 offspring per month
and from 2.5 to 7 months of mean life span.

3. Study area and field data

Our study area included parts of the Argentinean
humid pampas, in southern Santa Fe and northern
Buenos Aires provinces. This region includes the AHF-
endemic area, and the large quantity of historical field
and epidemiologic data available for the last 25 years,
which gives us a cognitive base in order to contrast the
model results.

3.1. Study site and rodent trapping

Our data set represents AHF studies conducted from
1 hree
s alls
w rtion
o es at
o ase.
T ed
f s a
h pled
f ed of
2
p lines
( -of-
w

by
t lated
a trap
n et
n by
nd the mean life span “τ” on NOAA AVHRR NDVI
ata. So, when NDVI increases (summer) we prop

hat “α” and “τ” take their maximum values, and wh
DVI has lower values (winter) we assume, base
xperimental evidence that birth rate decreases
ortality increases (“α” and “τ” decreases). NDVI da
991 to 1994. Rodent trapping was conducted at t
ites within the AHF-endemic area: Pergamino f
ithin what has been called the historic area, a po
f the endemic area which had high numbers of cas
ne time, but currently has a low incidence of dise
wo localities, Alcorta and Ḿaximo Paz, were select
rom the AHF-epidemic area, which currently ha
igh incidence of disease. Each locality was sam

or 4 days during each season. Trap lines consist
5 Sherman live-capture traps (8 cm× 9 cm× 23 cm)
laced at 5 m intervals along roadsides, fence
separating cultivated fields) and railroad rights
ay.
The relative density of rodents was estimated

rap success. The overall trap success was calcu
s the total number of animals captured per 100
ights, where trap nights is the number of traps sx
umber of nights. Total trap nights were adjusted

http://daac.gsfc.nasa.gov/
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Fig. 2. Evolution ofC. musculinuspopulation considering non-infected (X), permanent infected (Y), and immunized (Z) sub-populations.
Parameter values used in this specific case areX0 = 0.1,Y0 = 0.02,τ = 7 months,β = 12 per life span,m= 1,α = 11.7 per life span, andγ = 0.15.

subtracting half the number of closed-but-empty traps.
The specificC. musculinustrap success was calculated
by subtracting half of the traps occupied by animals of
other species from the total trap nights.

4. Testing results

When we useC. musculinusparameter values
(Table 1) to run the model with an infected and a non-
infected sub-population (as originally didKirchner and
Roy, 1999); the results were very similar to

those of the original model (Fig. 3 inKirchner
and Roy, 1999). In the next step, we included the immu-
nized sub-class “Z” in Eq. (3) using the same parame-
ter values.Fig. 1shows the schematic representation of
this model. In both cases, the proportions of different
host categories evolve to stationary values as described
byKirchner and Roy (1999). Nevertheless, the effect of
including another rodent category produces an increase
in the total population and inversely lowers stationary
values for infected sub-population (“Y”) by almost 50%
(Fig. 2). Note that “Y” represents individuals that can
produce human infection.

Fig. 3. Simulated dynamic ofC. musculinuspopulation of Pergamino city: life span and reproductive rate vary in relation to Pergamino NDVI
values from January 1991 to December 1994. The NDVI curve has been smoothed and normalized to its maximum value, the scale in the left
side of the graph must be understood as NDVI value.
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In the original model, there was no factor that would
account for seasonal variation in habitat quality. As we
describe above, this factor is included in our model
using NDVI as a variable that modulates both “α”
and “τ”. When NDVI is included (Fig. 3), the host
population does not evolve to a final stationary state.
Instead, we obtain a cyclic pattern during the simu-
lated 4-years period showing an annual oscillation with
maxima during early Autumn (March, April). The to-
tal population pattern agrees with previously reported
seasonal field peaks ofC. musculinus(Crespo et al.,
1970; Mills and Childs, 1998; Mills et al., 1992a,b).

The permanent infected rodent also show this seasonal
pattern with 1 or 2 months delay compared with a
non-infected sub-population and also the field infec-
tion distribution showed the highest values at the end
of summer and autumn (Calderon paper in prepara-
tion).

Although NDVI, as well as “α” and “τ”, have annual
maximum in summer, the model produces maximum
rodent numbers in Autumn, implying a lag effect be-
tween “α” or “ τ” and “X+Y+Z”. If that delay is not
taken into account, we cannot expect a significant cor-
relation between NDVI and the total number of rodents.

F
m
w
w

ig. 4. (a) Total population (X+Y+Z), for the standard model and a mo
onths), the dependence on NDVI was maintained in both cases. (b)
ith very low NDVI values during the first year, such as might result fro
here its sub-population recovers 28 months later.
del reducing the life spanτ to half (reaching a maximum value of 3.5
Model ofC. musculinuspopulation dynamics (X, Y, Z curves) associated

m unfavorable climatic conditions. Note the impact on infected mousses
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This effect can also be observed inFig. 3, where NDVI
curve for that period is compared with the modeled
total population peaks.

Fig. 4a, presents the curve for the total rodent
population corresponding to the previous simulation
together with a curve for which the life span has been
artificially reduced (maximum of 3.5 months) and
maintaining its NDVI dependence in the equation.
In contrast to the result obtained byKirchner and

Roy (1999)that showed a better fitness for the entire
population, in our case, the total population was lower
during the entire simulation.

In Fig. 4b, we have lowered NDVI values during
the first year to simulate extreme environmental
conditions such as a long and harsh winter (i.e., very
low NDVI values) and a mild summer, which have
been suggested to affectC. musculinusdensities.
In this case, virus extinction occurs for almost 3

F
w
c
w
t

ig. 5. (a) Total population modeled by using averaged NDVI values
ith the average normalized trap success of the same places. Time is
aptured total populations ofC. musculinusin Máximo Paz, Pergamino, a
as transformed to fraction of the carrying capacity (for more details

rap values of summer season for the all period (January 1991 to Dec
from three localities (Máximo Paz, Pergamino, and Alcorta) compared
measured in months starting in January 1991. (b) Simulated (predicted) and
nd Alcorta. Trapping was conducted once per season and trap success

see the text). The startingYaxis values were estimated by the mean field
ember 1994).
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years before finally reappearing. Mathematically,
virus recovered because “Y” never actually reached
zero. In nature such a recovery might result from the
introduction of virus from an adjacent population via

immigration. About month 25 (i.e. the summer’s end
of the second year) the model predicts a large number
of non-infectedC. musculinusbut very few infected
mice.

F
n
1
a
r

ig. 6. (a) (Mills, 1992a; Fig. 1) Mean monthly trap success (numbe
umber of confirmed cases of Argentine hemorrhagic fever (AHF) in so
988–August 1990. (b) Total and infected sub-populations of a mode
verage of the values for the localities in the Argentine hemorrhagic
eported in (a). Period March 1988–August 1990.
r of captures ofCalomys musculinusper 100 trap nights) and monthly
uthern Santa Fe, and northern Buenos Aires provinces, Argentina, March
l run with a reproductive rate reduced to 0.6 ofα. The input NDVI is an
fever endemic zone in order to achieve better agreement with field data
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5. Comparative results

We attempted to evaluate the capability of our
model, to describe the temporal and spatial variations
of rodent populations monitored at several localities
in the study area during 1991–1994. For each locality,
the model was run using the corresponding pixel
values of NDVI from NOAA decadal imagery during
the simulation period and yield results as fractions of
the carrying capacity. Field data are presented as total
relative population densities derived from standardized
trap success. These density values were normalized
using the maximum trap success at each locality (from
1991 to 1994) as the carrying capacity value (equal to
1) to compare it with the modeled results.

Fig. 5a presents the normalized measured total pop-
ulation density and the simulated population density
(X+Y+Z) averaged for three localities: Ḿaximo Paz,
Alcorta, and Pergamino.Fig. 5b includes the measured
and simulated data for each locality. Those localities
were chosen because they were representative of
the endemic area while presenting no anomalous
patterns. A better agreement is observed with the
mean curve than with individual curves. Nevertheless,
some general aspects of our field data, as the seasonal
variation in population dynamics with maximum
values in the autumn, are accurately predicted by the
model. A better fit of the model to field data might
be obtained by exploring different algorithms for
translating trap success to fraction of the carrying
c

h
w
C al
s nt
p We
a odel
u the
e 90.
F h a
m f its
o ute
a ect of
t s
p ted
m inal
“ due
t ory

and because permanent contact between males and
females was maintained in the laboratory.

6. Discussion and conclusions

We have presented a methodological approach
based on a simple numerical model of rodent popu-
lations and viral infection that incorporates causality
in the form of environmental information from remote
sensing. The model is a useful tool for simulating
hypothetical scenarios varying both environmental
conditions and biological parameters of rodent
populations. We selected NDVI as our indicator of
environmental condition because it is readily available,
biologically meaningful, and easily interpreted.

.3 When immunized sub-population and seasonal
variation is incorporated via NDVI, the theoretical
conclusion of Kirchner and Roy (1999)regarding
the advantage of having a shorter life span is not
corroborated. In our model, when life span is artifi-
cially reduced while maintaining an association with
NDVI, the total population was lower throughout the
simulation. A more complete and accurate study of
this effect could be done with a model that includes
both population cohort structure and seasonal variation
of population parameters.

In agreement withMills et al. (1991)andDe Vil-
lafañe et al. (1988), whom proposed a long and harsh
winter as favorable condition to the extinction of the
v re-
s rus
e

ind
o tion
d ical
a with
J y
l ues
f t the
r erved
i ant
w onal
v ion
d ear in
e ing
p tion)
s ndi-
apacity.
Mills et al. (1992a, especially Fig. 1 therein whic

as inserted in this paper asFig. 6a) andMills and
hilds (1998) provided data from a longitudin
tudy of C. musculinus, showing that both rode
opulations and AHF cases increased in 1990.
pplied our model to those data by running the m
sing mean NDVI data from a large portion of
ndemic area from March 1988 to August 19
ig. 6b presents numerical results obtained wit
odel with a decreased reproductive rate (0.6 o
riginal value). Although there is not an absol
greement, the model recovers the essential asp

hat field data: an increase of the totalC. musculinu
opulation during 1989 and the increase of infec
ice some months later. It is possible that our orig

α” values from laboratory data are overestimated
o optimal environmental conditions in the laborat
irus in nature; low NDVI values (such as might
ult from these climatic conditions) resulted in vi
xtinction.

These results demonstrate the utility of this k
f approach for studying and simulate popula
ynamics of rodents and its links with epidemiolog
spect of the disease: because the natural infection
unin virus is low (Mills et al., 1994), we used a ver
ow proportion of carrying capacity as starting val
or infected and non-infected rodents to represen
ates between each sub-population densities obs
n field traps. The preliminary results of concord
ith field trapping data are demonstrating seas
ariation with autumn peaks in rodent populat
ensities. These seasonal changes are more cl
ndemic AFH localities than in historic or surround
laces of the disease (Polop, personal communica
uggesting an important role of environmental co
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tions in population dynamic and indirectly infection
dynamic. The sole environmental variable in our
model, NDVI, reaches maximum values in summer.
NDVI, within the context of the structure of the
mathematical model explained much of the variation
in rodent population density and prevalence of viral
infection. With some modification in population
parameters, our attempts to model previously reported
historic data (Mills et al., 1992a) provided results
that were consistent with those data in terms of the
variation in time of total population densities (Fig. 5).
Also the proportion of permanent infected mice is
quite in agreement with AFH cases (Fig. 3).

Nevertheless, several additional considerations
might allow the improvement of our model. The NDVI
decadal AVHRR product uses the maximum NDVI
value in each 10 days period. In some cases, including
the humid pampas agricultural landscape, rodent pop-
ulations in winter could be more sensitive to minimum
than to maximum values of NDVI. Because we are con-
strained by the period of available field data, we cannot
use data from others satellites. In future studies, involv-
ing other field data sets, biological parameters may be
modeled as a function of variables derived from other
satellites with different temporal and spatial resolution
(as EVI, enhanced vegetation index, from MODIS sen-
sor; LAI leaf area index; SAVI soil adjusted vegetation
index and GVI vegetation index derived from AVIRIS
instrument). Additionally, in future studies, we will
incorporate other variables related to soil moisture,
l

del
o der-
e due
l ich
fi ing
c ing
c he
p rate
a ed,
a nce
o tly
o

re-
s
( e in
t op-
u ced

what we feel is a useful causal approach to the appli-
cation of satellite-derived information to problems re-
lating to human diseases.
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