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Fire products fromModerate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radi-
ometer Suite (VIIRS) imagery provide timely information forwildfire detection,monitoring, and characterization
at the global scale. However, in Alaskan boreal forest fires, their lower effectiveness in detecting residual fire once
the high-intensity fire front has passed limits their practical use for regional or local fire management decisions.
Using data acquired during Alaska's 2016 fire season,we analyzed the performance of theMODIS-basedMOD14/
MYD14, and themore recent VIIRS I-band active fire products. A comparison with the fire perimeter and proper-
ties data published by the Alaska Interagency Coordination Center (AICC) shows that both MODIS and VIIRS fire
products successfully detect all fires larger than approximately 200–300 ha. For fires smaller than this threshold,
the VIIRS I-band product offers higher detection likelihood. Tomap burn areas containing both low- and high-in-
tensity active fire, we developed the VIIRS I-band Fire Detection Algorithm for High Latitudes (VIFDAHL). We
apply this algorithm to regions of known Alaskan boreal forest fires and validate it using events mapped by
fire management agencies and detected on closely-timed Landsat imagery. We find that for Alaska, an example
of a high-latitude region, VIFDAHLmore accurately captures the fire spread, can differentiate well between low-
and high-intensity fires, and can detect 30–90% more fire pixels compared to the MODIS and VIIRS global fire
products.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Operational fire detection products from satellite-borne visible and
infrared sensors have been used to track wildfire activity and inform
fire managers of fire risk and hazard since they first became available
in the 1980s (Ichoku et al., 2012). In the northern high-latitude regions
such as Alaska, where fire affects remote, sparsely populated areas, site
access or fire suppression decisions are associatedwith significant com-
plexity and cost. In such areas, satellite remote sensing frequently offers
the only avenue to obtain near real-time data for decision support.

In Alaska's vast boreal forest, wildfires have been reported to be in-
creasing in frequency, severity, and extent, in part due to a rapidly
changing climate regime (Kasischke and Turetsky, 2006; Soja et al.,
2007; Collins et al., 2013). Between 1960 and 2000, the area annually af-
fected by fire increased from an average of 400,000 ha per year to
approx. 767,000 ha per year (Kasischke et al., 2010). In the Alaskan bo-
real forest, stands of black spruce (Picea mariana), the dominant
Koyukuk Drive, University of
coniferous species, undergo a complete stand-replacing fire roughly
every 50–500 years (Kasischke et al., 2010). Due to the slow progress
of decomposition in the sub-arctic climate a deep layer of fine organic
material covers the forest floor. The combustion of this duff layer ac-
counts for more than half of the fire-related carbon consumption and
emissions in boreal forest areas (Kasischke et al., 2005; Randerson et
al., 2006; Kasischke and Hoy, 2012); the degree towhich it is consumed
impacts carbon storage (Genet et al., 2013) and the succession of species
during post-fire recovery (Johnstone et al., 2010). Rapid changes in the
frequency and characteristics of Alaskan wildfires therefore affect the
atmospheric composition at local (Grell et al., 2011; Andreae and
Merlet, 2001) and hemispheric scales (Pfister et al., 2005, 2006, 2008).
The investigation of some of these processes requires observational
data to be available in near real time.

In 2015 Alaska witnessed an extreme fire season, with the total area
burned exceeding 2.5 million ha (Roman, 2015), which is six times the
long-term annual average. Since the start of the Alaska Large Fires Data-
base in 1940 (Kasischke et al., 2002) the area burned in 2015 was only
exceeded during the 2004 fire season. 2015 was followed by a below-
average fire season in 2016 (200,000 ha burned). These two recent
fire seasons provide an excellent opportunity to investigate a variety
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of fires that are representative for the fire regime in the Alaskan boreal
forest.

The goals of this study are to use 2015 and 2016 data as a test case:

• To investigate the performance of the principal fire products currently
available for operational use in the detection and mapping of Alaskan
wildfires, using fire properties and perimeter data provided by fire
management agencies as reference data.

• To design and evaluate a customized fire detection algorithm suitable
for Alaska and to compare its performance to the global product as
well as validate it with higher-resolution data.

We first provide a brief review of existing global fire detection prod-
ucts, introduce four study sites, and evaluate selected global fire prod-
ucts with ground truth data available from fire management agencies.
We then present the VIIRS I-band Fire Detection Algorithm for High Lat-
itudes (VIFDAHL), validate it using higher-resolution remote sensing
data, and compare its performancewith the previously evaluated global
fire products.

2. Global active fire products: a brief review

Most global operational fire products make use of two infrared (IR)
bands: one in the mid-IR (centered at a wavelength of ~4 μm), which
corresponds to the peak of radiant emittance caused by a flaming wild-
fire at ~1000 K; and a second band in the thermal IR (at ~11–12 μm),
which is sensitive to background radiation emitted by the Earth's sur-
face. Whenever a pixel's footprint covers the location of a wildfire, the
mid-IR radiance is elevated with respect to the thermal IR radiance.
Fire detection algorithms use thresholds on both the value of the mid-
IR emissive signal and the difference between the mid- and thermal IR
brightness temperatures. Algorithm-dependent checks serve to mini-
mize errors of commission (“false alarms”) and errors of omission
(“missing fire pixels”).

The Wildfire Automated Biomass Burning Algorithm (WF-ABBA),
developed for fire retrieval from Geostationary Operational Environ-
mental Satellite (GOES) and other geostationary satellites operated by
European, Japanese and Korean agencies, was used to generate an oper-
ational fire detection product with a spatial resolution of 4 km at the
equator as early as 1994 (Prins and Menzel, 1994; Menzel and Prins,
1996; Prins and Schmidt, 2001). However, it was only in 2002 that a
WF-ABBA based daily fire product was available operationally for the
user community through NOAA's National Environmental Satellite,
Data, and Information Service (NESDIS). Sub-pixel analysis is used to re-
trieve the temperature and the fractional areas of fires in individual
pixels (Dozier, 1981; Matson and Dozier, 1981).

A family of fire detection algorithms was also developed for the Ad-
vanced Very High Resolution Radiometer (AVHRR) on NOAA's polar-
orbiting satellites (Giglio et al., 1999; Li et al., 2000a; Li et al., 2000b).
The Fire Identification, Mapping and Monitoring Algorithm (FIMMA),
which is available at NESDIS, is specifically aimed at the detection of for-
est fires, as it relies on land cover data among its inputs to complement
the AVHRR bands 2 (0.9 μm), 3b (3.7 μm), 4 (10.8 μm) and 5 (12 μm)
that are used.

Following the launch of the National Aeronautics and Space
Administration's (NASA's) Earth Observing System (EOS) suite of
satellites beginning in 1999, the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors offered new opportunities for
advancing fire detection and characterization. MODIS data are used
to generate the currently best-validated active fire detection prod-
ucts, MOD14 and MYD14 (from the Terra and Aqua spacecraft, re-
spectively), at a spatial resolution of 1 km at nadir (Kaufman et al.,
1998; Justice et al., 2002). Originally described by Kaufman et al.
(1998), the MODIS operational algorithm version has since evolved
from collections 2, 3, 4, and 5 (Giglio et al., 2003) up to the current
collection 6 (Giglio et al., 2016). MODIS acquires data in 36 spectral
bands, ranging from visible and near infrared (VNIR) to short-wave
infrared (SWIR), mid-infrared (MIR) and thermal infrared (TIR). 29
of the 36 spectral bands are acquired at a ground-sampling distance
(GSD) of 1 km at nadir. Off-nadir, pixel footprints grow to up to ap-
proximately 2 × 5 km at the swath edge. Active fire detection
makes use of two channels centered at 3.96 μm (band 21 and the
more sensitive band 22, which saturates at a lower brightness tem-
perature) and the TIR channel 31, which is centered at 11 μm.

The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Na-
tional Oceanic and Atmospheric Administration's (NOAA's) Suomi Na-
tional Polar-orbiting Partnership (Suomi NPP) platform (Cao et al.,
2014) was launched in late 2011 under the Joint Polar Satellite System
(JPSS), which is a joint program managed by both NOAA and NASA. A
fire detection algorithm based on the moderate-resolution (“M”)
bands (GSD 750 m at nadir) uses the dual-gain band M13 (3.973–
4.128 μm,with saturation temperatures of 343K and 634K) and the sin-
gle-gain band M15 (10.263–11.263 μm) (Csiszar et al., 2014). A second
algorithm, devised by Schroeder et al. (2014) uses the bands optimized
for imaging (“I” bands, GSD 375 m at nadir), specifically I4 (centered at
3.74 μm) and I5 (centered at 10.45 μm). Polivka et al. (2016) have pro-
posed the Firelight Detection Algorithm (FILDA), which combines VIIRS
M-band infrared data with the visible light signal from the near-con-
stant contrast Day-Night Band (DNB) (Liang et al., 2014) for improved
night-time fire detection.

Csiszar et al. (2006) validated the MODIS active fire products using
simultaneous higher-resolution data from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) on the Terra plat-
form for wildfires in the Eurasian boreal forest in Siberia. They found
that, due to the thick smoke observed in Siberian boreal forest fires,
the footprint of a 1 × 2 km MODIS pixel needs to contain one third
more 30 m ASTER fire detections than required for fires in the Brazilian
Amazon (60 vs. 45) to achieve a probability of 50% for the pixel to be
flagged as “fire”. Schroeder et al. (2008) validated WF-ABBA and the
MODIS products using ASTER and Landsat ETM+ over Amazonia. A dif-
ferent approach to validation consists in the comparison of the output
from newer products to existing ones. Thus, Schroeder et al. (2014)
compared the new VIIRS 375 m I-band global product to MOD14/
MYD14 and to the VIIRS M-band product, by sampling 12 zones across
the globe for one month (August 2013). Two of these zones are in the
boreal region, one over Canada, one over Russia. For these zones, errors
of commission do not exceed 0.04% (Schroeder et al., 2014). Direct com-
parison with MODIS as well as higher-resolution sensors was carried
out for fire events in California, Brazil, and Australia, but no locations
in the boreal forest were selected for detailed investigation.

3. Wildfire study areas

In this studywe use four selected study sites (Fig. 1) to generate and
validate a newAlaska-specific VIIRS I-band basedfire product. They rep-
resent distinct situations in which fire was active during the 2015 or
2016Alaskafire seasons. For these sites, cloud-free Landsat 8Operation-
al Land Imager (OLI) data that was closely timed with one of the VIIRS
overpasses in our dataset was available.

3.1. Willow: Sockeye fire, June 2015

A human-caused wildfire started on the northern outskirts of the
town of Willow, southcentral Alaska, on June 14, 2015. High winds
and dry weather conditions caused the fire to rapidly grow and spread
southwards. Numerous buildings were destroyed. The area north of
Willow consists mainly of mature black spruce forest, interspersed by
birch and balsam poplar and bordered by alluvial plains covered in
grass and brush. The Susitna River borders the area in the west.

Unlike most Alaskan boreal forest fires, the road-accessible Sockeye
fire was vigorously suppressed. Thus, significant flaming fire activity



Fig. 1. Location of the four 2015 and 2016wildfire study areaswithin Alaska:Willow (Sockeye fire), Eagle (Seventymile and Troutfire), and two areaswithin the northern Yukon-Koyukuk
basin which saw multiple large-scale and high intensity wildland fire events during both July 2015 and 2016.
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was limited to less than oneweek.We selected this fire site as it offers a
diversity of surface characteristics and fuels that were likely to cause
false positive detections in the new Alaska-specific algorithm. This is
due to the extensive bare, dry, highly reflective sand banks along the
Susitna river as well as an old fire scar in the vicinity. Cloud cover also
varied widely throughout the active phase of this fire event.

The geographic extent of this study area is latitude 61.7–61.9°N, lon-
gitude 150.0–150.1°W.

3.2. Yukon-Koyukuk: multiple wildfires, July 2015

During the last third of themonth of June 2015, with hot, dry, windy
weather continuing in western interior Alaska, multiple wildfires were
ignited by lightning across the rural areas of northern Yukon-Koyukuk
region. Thesefires offer an excellent test case forfire detection andmap-
ping, in particular for large-scale, high-intensity burns in a remote area
with little infrastructure and predominately black spruce forest. We in-
clude the following large fire events: Sushgitit Hills (discovered June 21,
final area 126,633.5 ha), Rock (June 19, 57,728.6 ha), Torment Creek
(June 20, 33,359.1 ha), Tobatokh (June 22, 21,867.6 ha), and Holonada
(June 22, 19,496.2 ha). Detections from neighboring fire perimeters
that were active at the same time (Banddana Creek and Isahultila) are
sometimes present at the edge of the study area. The fires remained ac-
tive from the time of ignition to mid-August, when wet weather ended
large-scale wildfire activity.

We selected this site because the fire events generated a large
amount of data (N1000 detections in a single acquisition), with high
fire intensity, and abundant smoke and clouds. As the area is remote
and sparsely populated the fires were classified in the “limited” man-
agement option by the fire protection agencies and essentially left
unsuppressed. The only exception is the Rock fire, in the “full”manage-
ment option, due to its proximity to the village of Hughes on the banks
of the Koyukuk River. The VIIRS data for this area contain numerous test
cases for data anomalies due to sensor saturation and intense signals.

The geographic extent of this study area is latitude 65.75–66.1°N,
longitude 150.9–154.5°W.
3.3. Eagle: early-season wildfires, May 2015

We further selected a small area north of the townof Eagle, AK,which
was affected by early-season lightning-ignitedfires in lateMay 2015. The
area is mountainous, largely covered by either black spruce forest or al-
pine tundra interspersed with rocky outcrops. The Seventymile fire
(1175 ha) was located approximately 10 km northwest of Eagle, and
the Trout fire (106.7 ha) was a smaller nearby event.

The geographic extent of this study area is latitude 64.75–65.17°N,
longitude 140.95–141.75°W.
3.4. Northern Koyukuk: multiple large fires, July 2016

From the 2016 fire seasonwe selected a study area containing sever-
al of the largest fires of 2016, during a short period of particularly in-
tense fire activity: Hog (discovered July 5, 23,700.5 ha), Hogaza River
(June 26, 21,179.1 ha), Iniakuk Lake (June 25, 14,872.0 ha) and Bedrock
Creek (July 3, 2650 ha).

The geographic extent of this study area is latitude 66.5–67.25°N,
longitude 152.1–154.2°W.
4. Data

This study required data from the northern high latitudes. While on
the one hand overlapping tracks of polar orbiting satellites provide
more coverage (and thus more frequent data) in higher latitudes,
poorer computer network infrastructure still poses challenges for reli-
able and quick data transmission from mid-latitudes to higher-latitude
areas for near-real time applications. However, local data downlink sta-
tions in the high latitudes provide an opportunity to overcome this chal-
lenge. Even though this work is based on data from NOAA and NASA
data repositories, it was undertaken with a view towards future opera-
tional use based on processing locally downlinked data to detect and
map fires, and tailor the fire products to regional and local needs.
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4.1. Global MODIS and VIIRS I-band products

We downloaded MODIS and VIIRS I-band fire detection data from
the Land, Atmosphere Near real-time (NRT) Capability for EOS
(LANCE) system, specifically the Fire Information for ResourceManage-
ment System (FIRMS) [https://earthdata.nasa.gov/firms]: The near real-
time VIIRS 375 m I-band Active Fire product VNP14IMGT (DOI:http://
dx.doi.org/10.5067/FIRMS/VIIRS/VNP14IMGT.NRT.001) and the MODIS
Collection 6 NRT Hotspot/Active Fire Detections MCD14DL (DOI:
http://dx.doi.org/10.5067/FIRMS/MODIS/MCD14DL.NRT.006). At the
time of writing, availability of the VIIRS 375 m I-band product via
NASA's portals begins in January 2016. Therefore, we used the 2016
fire season for the evaluation of global fire products. After limiting the
data to the geographic extent of the Alaska, the dataset contained:

• MODIS (based on MODIS Terra and Aqua): 3769 detected hotspots
• VIIRS I-band (375 m, based on VIIRS on Suomi NPP): 11,091 detected
hotspots.

Each data record represents the latitude and longitude of a fire de-
tection associated with the following attributes: timestamp and bright-
ness temperature measurements, the along-scan and along-track linear
extent of thefire pixel's footprint on the ground, a confidence index, and
fire radiative power.

Regarding the three 2015 study areas, we were also able to obtain
NASA-processed VIIRS 375 m I-band active fire data for selected days
in 2015, courtesy Wilfrid Schroeder (University of Maryland and
NOAA/NESDIS Center for Satellite Applications and Research).

4.2. VIIRS Sensor Data Record (SDR) data

Webased the design of an Alaska-specific VIIRS I-bandfire detection
algorithm on VIIRS at-sensor brightness temperature swath data. For
this study, we used VIIRS Sensor Data Record (SDR) data from NOAA's
Comprehensive Large Array-data Stewardship System (CLASS) data
portal. Throughout the entire active fire phase of our two smaller
study areas (Willow and Eagle), all available VIIRS SDR datasets, with
the exception of those dominated by cloud cover or lacking any active
fire, were analyzed. For the large-scale study areas (Yukon-Koyukuk
and Northern Koyukuk), the analysis is based on the one or two VIIRS
scenes that coincide with the available Landsat 8 data. For later opera-
tional use, locally downlinked and processed data from the Geographic
Information Network of Alaska (GINA) at the University of Alaska Fair-
banks (UAF), a data provider that operates an X-band direct read-out
station, will be available. VIIRS SDR data is provided as HDF5 data files
aggregating multiple bands and 86-second granules, plus terrain-
corrected geodata layers for each granule and each sensor band group
(I-bands, M-bands and Day-Night-Band).

The swath acquired by VIIRS is 3040 km wide, 30% wider than a
MODIS swath (2330 km). The Suomi NPP orbit closely follows that of
Aqua (in the “A-train”), but at an orbit that is N100 km higher. Like
Aqua, Suomi NPP makes early afternoon overpasses on an ascending
node each day. The repeat interval is 16 days, the same as Aqua and
Terra, so orbital tracks vary from day to day. At a minimum, two good
daytime and two good nighttime overpasses can be expected daily for
any location in interior Alaska.

4.3. Fire location and perimeter data

To evaluate the fire detections against a measure for “true” fires, we
used the 2016 (and, limited to the study areas, 2015) additions to the
Alaska Large Fires Database (ALFD) (Kasischke et al., 2002) from the
AICC's Geographic Information System (GIS) portal (http://afsmaps.
blm.gov/imf/imf.jsp?site=firehistory). The 2016 dataset consists of a
Shapefile containing 155 fire perimeters, in a geographic coordinate
system using the NAD83 datum. AICC also distributes an additional
“Fire Locations” file, which provides point data for the initial location
of all events managed by AICC during the fire season; this is a superset
of the fires in the ALFD. For 2016, after removing events marked as
false alarms, there are 592 such fire locations. The GIS files are updated
approximately daily during the fire season; they were retrieved in their
final form in 2017, after the 2016 season ended.

The attribute information (Table 2) published by the AICC in-
cludes dates (first detection, last management action, date the fire
was confirmed “out”), environmental factors (fire cause, primary
fuel, total burned area in acres) and management related informa-
tion, such as false-alarm flags. During pre-processing we confirmed
that none of the 155 fires from the ALFD are marked as false alarms.
Inspection of the fire events without corresponding fire perimeter
shows that such fires are typically very small (b1 ha) human-caused
fires, often in residential or industrial areas, and that data available
for them may be incomplete. Given our interest in wildland fires
we only analyzed fires for which a perimeter is available, that is,
the 155 ALFD fire events.

During the active management phase of a fire event, operational fire
detections from VIIRS and MODIS are among the data sources used to
update fire perimeter geometries. However, at the end of a fire event
the final perimeter data is corrected using the best available source,
such as aerial GPS surveys or digitization of Landsat fire scar imagery
(Jennifer Jenkins, Alaska Fire Service GIS manager, personal communi-
cation). In the 2016 data, 66 final perimeters (43%) were generated
from Landsat 8 imagery, 16 (10%) from aerial survey data, 34 (22%)
were provided by operational teams affiliated with the Alaska Depart-
ment of Forestry or theNational Park Service, 26 (17%) from various op-
erational sources, and 13 (8%) were lacking provenance information.
Out of the 10 largest fires, 8 perimeters relied on Landsat 8 data.

2016 fire areas range from 0.2 ha to 23,700.5 ha, with a mean of
1293.7 ha and a median of 83.5 ha. Six fire events exceeded 10,000 ha.
The 2016 fire season was below-average, with many relatively small
fires. As a point of comparison, for the extreme 2015 fire season we
count 334 fire perimeters with a mean area of 6236.2 ha, a median of
1128.5 ha and a maximum of 126,633.5 ha. 133 out of 155 2016 fire
events (86%) were labeled as caused by lightning, compared to only
22 (14%) human-caused fires. Typically, only few large wildland fires
are caused by human action in interior Alaska. To be able to compare
andmeasure distances, we re-projected the geospatial coordinate infor-
mation in the fire events and the fire detection datasets to the Alaska Al-
bers Equal Area projection.

4.4. Landsat 8 imagery

To validate the Alaska-specific VIIRS fire detection algorithm, we
used three Landsat 8 OLI images that were acquired within minutes of
an available VIIRS granule of the same location (Table 3). For the 2016
Northern Koyukuk study area, for which the time lapse between
Landsat and the two closest VIIRS overpass times is approximately
45 min and 58 min, respectively, Landsat fire detections were not suit-
able to validate VIIRS-based detections and are therefore used for visu-
alization purposes only.

5. Methods

5.1. Evaluation of operational MODIS and VIIRS I-band products

For each of the 155 ALFD fires we counted the hotspot detections
that are located within a buffer of 1pixel (at nadir) around the fire pe-
rimeter: 375m for VIIRS and 1 km for MODIS data. Furthermore, we re-
quired detection time stamps to fall between the “discovery date” and
either the “out date” or, if unavailable, the “control date” attributes of
the fire event. The buffer was used to ensure that fire pixels whose cen-
ters lie just outside the recorded perimeter are correctly counted. The

https://earthdata.nasa.gov/firms
doi:10.5067/FIRMS/VIIRS/VNP14IMGT.NRT.001
doi:10.5067/FIRMS/VIIRS/VNP14IMGT.NRT.001
doi:10.5067/FIRMS/MODIS/MCD14DL.NRT.006
http://afsmaps.blm.gov/imf/imf.jsp?site=firehistory
http://afsmaps.blm.gov/imf/imf.jsp?site=firehistory
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footprint of a MODIS fire pixel is 1 × 1 km at nadir, but can become
stretched to a maximum of 2 × 5 km at the swath edge. VIIRS I-
band pixels are nearly square with a side of 375m, and grow by a fac-
tor approximately 2 towards the swath edge. The resulting dataset
was then statistically analyzed to compare the performance of
VIIRS I-band and MODIS hotspot counts and to evaluate their
spatio-temporal distribution.
Fig. 2. VIFDAHL (VIIRS I-band Fire Detection Algori
5.2. VIIRS I-band Fire Detection Algorithm for High Latitudes (VIFDAHL)

Our processing scheme ingests VIIRS data that are processed to the
SDR processing level (Fig. 2); it is based on the following design goals:

• all fire pixels correctly detected by the global VIIRS I-band product
must also be detected by VIFDAHL
thm for High Latitudes) processing workflow.
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• saturated pixels due to fire-related radiance are detected as fire
• the product is superior to the global VIIRS I-band product in detecting
residual fire behind the fire front

• fire detections are classified into high- and low-intensity fire pixels
• false-detection filters are optimized for sources typically found in
Alaska, specifically sand banks and old fire scars

• duplicate detections due to the bowtie effect are removed.

We generate the resulting detection product as a polygon vector
data in order to preserve the extent of the pixel footprint.

The scaled integer data in bands I4 (centered at 3.74 μm) and I5
(11.45 μm) were converted to at-sensor brightness temperature T4
and T5 (Schroeder et al., 2014). As in other fire detection algorithms,
VIFDAHL relies on a large difference in the I4 and I5 brightness temper-
atures (T4, T5); pixels that have no elevated T4 or appear cold in T5
(cloud, water) are discarded. In order to remove highly reflective river-
banks, we need the thermal signal to be elevated aswell. To ensure that
thresholds apply across meteorological conditions, we calculate a Nor-
malized Difference Brightness Temperature Index (NDBTI):

NDBTI ¼ T4−T5
T4þ T5

NDBTI values for a typical active fire are shown in Fig. 3: Fire pixels
show elevated NDBTI values, with the active fire front clearly distin-
guished from residual fire within the fire perimeter. Potential sources
of false detections are the sandy banks of the river visible to the left of
the fire and an eight year old fire scar in the top left corner. We used a
minimum in the NDBTI frequency distribution close to 0.05 to delineate
low- and high-intensity fire areas. Due to the risk of false detections in
Fig. 3. Willow study area, Sockeye fire 2015-06-15, 15:09 AKDT: Normalized Difference
Brightness Temperature Index (NDBTI) from VIIRS I-band data, overlaid with VIFDAHL
detections: high-intensity (yellow outline), low-intensity (grey outline), saturated
(green outline). VIFDAHL was tuned to avoid false positive detections along the sun-
heated riverbanks of the Susitna as well as for the fire scar of the 2007 Su River fire,
despite the elevated NDBTI values in these areas. The center of this scene is at latitude
61.84°N, longitude 150.1°W.
locations that are in reality highly-reflective river banks, we added a
check for elevated T5 (N312 K) for daytime images. The thresholds for
absolute values of T5 and T4 have been fixed via a grid search and sam-
pling across the test scenes (Table 1): we maximized the detections
within the known fire perimeter up to the point where false detections
started to appear in the known non-fire areas. For each test scene, the
entire VIIRS swath, subsetted to the extent of Alaska, was checked for
false detections not associated with a known fire.

A further consideration relates to artifact conditions associated with
fires. To assess them, we considered the pixel quality rasters for both
band 4 and band 5 (Stevens, 2014). These are 1-byte raster bands of
the same extent and pixel geometry as their respective radiance swaths.
The single byte encodes four separate 2-bit qualityflags for each pixel as
shown in Table 4. For nominal data, the value 0 (=00|00|00|00)would
be expected.

In the Yukon-Koyukuk study area we found the following anoma-
lous pixel quality values:

• 2=00|00|00|10 (“no calibration”) in both bands I4 and I5. These are
essentially no-data pixels, located towards swath edge, and represent
bowtie removal.

• 9 = 00|00|10|01 in band I4: “poor calibration, all saturated”
• 65=01|00|00|01 in band I5: “poor calibration radiance out of range”
• 193=11|00|00|01 in band I4: “poor calibration, radiance and reflec-
tance out of range”.

As is the case for thewildfires in the contiguous United States exam-
ined by Schroeder et al. (2014), the T4 brightness temperature associat-
ed with Q4= 9 was at its maximum value (367 K), whereas Q4= 193
indicates folded values caught at the lower end of the permissible data
range (T4 = 208 K). In a small number of pixels we found Q5 = 65 as-
sociated with Q4= 193 and a saturated T5 (see white arrows in Fig. 4).
Whenever Q4= 9 or Q4= 193, the pixel is counted as a high intensity
fire pixel by VIFDAHL, but the brightness temperature value for these
pixels does not provide any meaningful information. Furthermore,
Fig. 4 also shows some pixels appear dark in the T4 plot, for which T5
is elevated compared to background; but Q4 and Q5 are both zero
(nominal quality, no green outline) even though T4 is potentially anom-
alous. VIFDAHL does not flag these ambiguous cases as fire pixels.
Table 1
Overview of VIIRS swath data scenes that were used for each study area.

study area # VIIRS SDR granules used Start date End date

Eagle 5 2015-05-27 2015-05-29
Willow 19 2015-06-14 2015-06-19
Yukon-Koyukuk 1 2015-07-06 2016-07-06
Northern Koyukuk 2 2016-07-15 2016-07-15

Table 2
GIS attributes in the AICC and global fire product datasets that were used in this study. At-
tribute names are truncated from the names used within the AICC's database.

File Field name Description

AICC perimeters CalcAcres Final total area of the burn perimeter, in acres
FireName Name of fire (text label)
DiscDate Date on which fire was discovered (AKDT)
ControlDate Date on which fire was under control
OutDate Date on which fire was extinguished
FalseAlarm Flag marking false alarm fires
GenCause Fire cause (human or lightning)
Comment Plain text comment relating to the provenance of

perimeter geometry data
MODIS, VIIRS-I ACQ_DATE Date of detection (UTC)

ACQ_TIME Time of detection (UTC)



Table 3
Landsat and VIIRS scenes used for validation of the AK-specific VIIRS I-band fire detection scheme.

Landsat scene ID Landsat date-time (UTC) VIIRS orbit VIIRS granule ID VIIRS granule start time (UTC) Study area

LC80650142015147LGN00 2015-05-27 20:47:22 18,565 NPP001135168656 2015-05-27 20:45 Eagle
LC80700172015166LGN00 2015-06-15 21:19:17 18,820 NPP001150756980 2015-06-15 21:28 Willow
LC80730142015187LGN00 2015-07-06 21:36:48 19,118 NPP001168905804 2015-07-06 21:36 Yukon-Koyukuk
LC80740132016197LGN00 2016-07-15 21:43:04 24,438 NPP001492885869 2016-07-15 20:58 Northern Koyukuk

24,439 NPP001492947321 2016-07-15 22:41

Table 4
VIIRS I-band pixel quality raster data key.

2 bits: calibrated pixel value outside look-up table limits 2 bits: data required for calibration missing 2 bits: level of pixel saturation 2 bits: calibration quality

00: all within range 00: no missing data 00: none saturated 00 good calibration
01: radiance out of range 01: Raw Data Record missing 01: some saturated 01 poor calibration
10: reflectance or brightness temperature out of range 10: calibration data missing 10: all saturated 10 no calibration
11: both out of range 11: thermistor data missing 11: not used 11 not used
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5.3. Validation using Landsat 8

To validate VIFDAHL we used near-simultaneous Landsat 8 OLI imag-
ery.We implemented the fire detection algorithmdescribed in Schroeder
et al. (2016), which uses spectral reflectance in the OLI SWIR bands (B5
and B7) to preselect “unambiguous” and “marginal” fire pixels and then
re-examines the “marginal” pixels using contextual tests on the B7 reflec-
tance and the B7/B5 reflectance ratio with a 61 by 61 pixel window.

6. Results

6.1. Exploratory data analysis of operational MODIS and VIIRS I-band fire
detection datasets

Neither of the two global fire products is able to detect all 2016 ALFD
wildfires: MODIS failed to detect 45% and the VIIRS 375 m I-band prod-
uct failed to detect 35% of thefires. These relatively high percentages are
due to the small size and short burn duration of most 2016 fires, and
cloud conditions. As summarized in Table 5, the VIIRS I-band product
detects more fires than the MODIS product, offers an improvement in
the detection of smaller fires and detects numerous thermal anomalies
that are not wildfire, but instead associated with the Prudhoe Bay oil
fields on the North Slope of Alaska or volcanic eruptions in the Aleutian
Fig. 4. VIIRS I-band pixel anomalies illustrated for a subset of the 2015 Yukon-Koyukuk stud
brightness temperature (band I5). Pixels that saturate in I4 appear white (left) and are out
(nominal quality). Anomalous pixels that appear black (left) and are outlined in green corre
nominal quality brightness temperatures in I5.
arc. A small percentage of detections (2% for VIIRS, 3.3% for MODIS) re-
main unassigned to either an ALFD wildfire or another known source.
Out of these unassigned detections, approximately 40% for VIIRS (85
out of 224) and half for MODIS (63 out of 126) are located within 5 km
of a fire perimeter and are therefore likely to be associatedwith it. The re-
mainder consists in amix of industrial hotspot and sporadic detections of
unknown origin, more commonly found for the more sensitive VIIRS.

The number of VIIRS I-band fire pixels per fire is generally greater
than the number ofMODIS pixels because of themuch higher resolution
of VIIRS I-band (375 m) relative to MODIS (1 km). The relationship is
strongly linear (r2 = 0.93, see Fig. 5), and there are on average 2.9
times the number of VIIRS detections for a fire event as MODIS detec-
tions (95% Confidence Interval (CI) for the slope: [2.83, 3.02]). There is
a roughly linear relationship between a fire's size and the number of
fire detections contained within it (Fig. 5). From linear regression we
find an average of 1.63 MODIS detections (95% CI: [1.51, 1.74], r2 =
0.84) for each square kilometer of final area burned, and 4.66 VIIRS I-
band detections ([4.26, 5.06], r2 = 0.78).

After early August, when rain inhibited the fire activity (Fig. 6),
MODIS detections are much reduced, while the higher sensitivity of
VIIRS reveals fire activity for an additional two months, including at
night. Some of the VIIRS detections can be attributed to industrial fires
or wildfires too small to be in the ALVD perimeter dataset. Finally, the
y area on 2015-07-06. Left: mid-IR brightness temperature (band I4). Right: thermal IR
lined in blue; the corresponding I5 brightness temperature is within the normal range
spond to a “fold-over” of the digital number; all but two of these (white arrows) have



Table 5
Overall performance of MODIS and VIIRS I-band fire products for detection of 2016 Alaska wildfires.

Fire product Number of undetected
fires

% undetected
fires

Size largest undetected fire
(ha)

Max. # fire pixels per
fire

% fire pixels from oil wells &
volcanoes

% unassigned
detections

MODIS 70 45% 331 440 0.3 3.3
VIIRS I-band 55 35% 196 1323 3.9 2.0
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geographic distribution of fire detections is clustered around the timing
of overpasses. For overpasses for which only the swath-edge overlaps
with Alaska, fires in some geographical areas are likely to be missed
by the sensor. These variations are entirely independent of the process-
ing algorithm and rely only on the orbital and swath characteristics
(Fig. 7). The narrower range and timing of potential overpass times of
VIIRS compared toMODIS can in some cases lead to a short-lived fire re-
ceiving more MODIS than VIIRS I-band detections.
6.2. VIIRS I-band Fire Detection Algorithm for High Latitudes (VIFDAHL)

We validated VIFDAHL using near-simultaneous Landsat scenes
listed in Table 3. For the Willow study area, on June 15, 2015 and the
Eagle study area on May 27, 2015, the corresponding Landsat scenes
were acquired within 9 and 2 min, respectively, of the VIIRS granule.
For the Yukon-Koyukuk study area, this lapse is approximately 1 min.
Spatially, VIFDAHL detections show an excellent match with Landsat
detections. There is no obvious co-registration error between the
Landsat and the VIIRS footprints (Fig. 8a and b show close-up imagery).
Fig. 5. Global VIIRS I-band (375 m) vs. MODIS (both Terra and Aqua) fire detection counts. A p
Number offire detections vs. fire area. Linear regression yields an average of 1.6MODIS detectio
strongly linear relationship between the number of VIIRS I-band and MODIS detections for eac

Fig. 6. Hourly detection counts across the Alaska 2016 fire season for global fire products: MOD
spike in July and are otherwise low (b100).MODIS detections generally fall off inAugust,while t
of detection timing is due to the temporal grouping of satellite overpasses. ForMODIS Terra, mid
on an ascending node; for Modis Aqua and VIIRS on Suomi NPP, the early afternoon overpasses
times of day are in Alaska Daylight Time.)
In freshly burned areas, which contain smoldering and residual
flaming fires, we tend to find detections of low-intensity fire. There is
no false signal from riverbanks or old fire scars in any test scene, but
there are areaswhere sporadic Landsat fire detections are presentwith-
out a corresponding VIFDAHL detection. For the Willow case (N = 22
VIIRS detections), the mean Landsat fire pixel count for a VIFDAHL
high-intensity pixel is 18.7 (standard deviation: 12.5), and for a low-in-
tensity pixel 12.7 (std: 19.1). For the Eagle case, we identify 9 fire pixels
(8 high-intensity, 1 low-intensity). High-intensity VIFDAHL pixels con-
tain higher numbers of Landsat fire pixel than low-intensity fire detec-
tions (Table 6). Landsat pixel counts were not carried out for the
Northern Koyukuk case, as the time lapse between Landsat 8 and
VIIRS overpass was too great and the fires too fast-moving for the result
to be meaningful.

VIFDAHL detections were compared with the global VIIRS I-band
(375m) product for all four study areas (Table 6). Overall, high-intensi-
ty VIFDAHL detections closely approximate VIIRS I-band fire pixels
(Figs. 8a–b, 9b–d). In addition, VIFDAHL delivers a second set of detec-
tions of less intense fire, predominantly in areas that contain Landsat
8 fire detections, but no VIIRS I-band or high-intensity VIFDAHL
oint represents a fire event of the Alaska Large Fire Database for 2016 (155 fire events). a)
ns (r2=0.84) and 4.7 VIIRS I-band detections (r2=0.78) per km2 offire area. b) There is a
h fire (r2 = 0.96, slope = 2.9). The 95% confidence intervals are indicated as shaded.

IS Terra, MODIS Aqua and VIIRS I-band (375 m) detections. Hourly counts only show one
hehigher sensitivity of VIIRS revealsfire activity for an additional twomonths. The banding
-day/early afternoon overpasses occur on a descending node, and late evening overpasses
occur on an ascending node and the early morning overpasses on a descending node. (All



Fig. 7. Spatio-temporal distribution of fire detections from global active fire products, in Alaska Daylight Time, during the 2016 fire season, aggregated to a 25 by 25 km grid. Top row:
MODIS Terra. Middle row:MODIS Aqua. Bottom row: VIIRS on SUOMI NPP, I-band product. There are no fire detections for MODIS Aqua or NPP/VIIRS during the 18:00 to 24:00 time slot.
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detections. Not all low-intensity VIFDAHL detections contain Landsat 8
detections. While it is not at present possible to exclude that VIFDAHL
may falsely detect areas where a fresh fire scar is still hot, but
extinguished, possible alternative reasons for the absence of Landsat de-
tections are: the shorter wavelength of Landsat's SWIR bands, which is
more affected by smoke and clouds, and requires higher temperatures
to activate; and the time lapse between VIIRS and Landsat overpasses.
Moreover, some high-intensity VIFDAHL and VIIRS I-band fire pixels
also correspond to zero Landsat 8 fire pixel counts.

A source of potentially false VIFDAHL detections can be seen in areas
with high-intensity fire and large amounts of smoke or clouds. Such an
example is visible in the twowesternmost fires in Fig. 9a, as a halo of de-
tections around the area that certainly contains fire.

In the two smaller test scenes, Eagle and Willow, where fire was
burning with less intensity and/or was more heavily suppressed,
VIFDAHL yields between 30 and 50% more detections than the global
VIIRS I-band dataset. For the two large-scale extended burn events of
the 2015 Yukon Koyukuk and the 2016 Northern Koyukuk study area,
we count approximately 90% more VIFDAHL than VIIRS I-band detec-
tions, some of which capturing residual fire as mapped by Landsat,
some due to the halo-effect around smoke plumes.

7. Discussion and conclusions

Based on the analysis of the 2016Alaskafire season, the 375mglobal
VIIRS I-band fire product performs better than the MODIS product in
Alaska, mainly due to the higher spatial resolution, providing about
three times the number of fire detections for an average fire than the
MODIS-based product. A VIIRS pixel's footprint on the ground is by
about a factor of 7 smaller than a MODIS pixel, at nadir. As only a
small fraction of this footprint is on fire, the non-burning fraction can
vary widely. Even though an investigation of sub-pixel active fire area
is beyond the scope of this study, we can note that Kasischke et al.
(2010) determine the fraction of the area covered by ALFD polygons
that was unburned. They find an unburned fraction of about 20% for
the extreme fire year of 2004, and much higher values of up to 70% in
small fire years. We would therefore not expect the number of detec-
tions to grow proportionally to the pixel area.

We aimed to provide fire managers and other data users in the high
northern latitudes with criteria to evaluate and understand the spatio-
temporal patterns contained in the global fire detection data that are
centrally available from MODIS and VIIRS-based products. Due to the
timing of satellite overpasses, late evening detections come exclusively
from MODIS Terra, while VIIRS on Suomi NPP delivers a much larger
number of early morning detections than either of the MODIS sensors.
Fire management service briefings (timed typically early morning, and
again in the late afternoon) should rely on detections from the core
time of overhead passes (approx. 11:30 to 15:30 AKDT for daytime de-
tections, and 21:30 to 1:30 AKDT for MODIS Terra or 2:00 to 6:00 AKDT
forMODIS Aqua or VIIRS for nighttime detections) tomaximize the area
from which detections could potentially originate.

VIFDAHL is easy to implement and computationally light-weight, as
it uses simple thresholds on bands and band combinations, tuned for
Alaskan boreal forest fires. The Alaska-specific approach with VIFDAHL
was able to detect more low-intensity fire pixels than the global opera-
tional VIIRS I-band products. This is of interest for mapping areas that
are most likely to pose a residual hazard and need to be monitored for
any renewed need of fire suppression activity. While VIFDAHL appears



Table 6
Comparison of VIFDAHL with the global VIIRS I-band product and with Landsat 8 fire detections.

Study area VIIRS I-band
(global product) detections

VIFDAHL
high-intensity fire
detections

Landsat 8 detections per VIFDAHL
high intensity pixel mean (std)

VIFDAHL
low-intensity fire
detections

Landsat 8 detections per VIFDAHL
low-intensity pixel: mean (std)

Willow 2015 15 11 18.7 (12.5) 11 12.7 (19.1)
Eagle 2015 7 8 28.3 (19.9) 1 2 (n/a)
Yukon-Koyukuk 2015 633 745 14.6 (30.5) 325 7.9 (21.1)
Northern Koyukuk 2016, scene 1 440 458 n/a 388 n/a
Northern Koyukuk 2016, scene 2 1006 1143 n/a 791 n/a

Fig. 8. Overview of three study areas with VIFDAHL fire detections outlined in yellow (high-intensity active fire) and grey (low-intensity fire), on a background of near-simultaneous
Landsat 7-5-3 false color RGB composite with Landsat fire detections overlaid in red. a) Eagle, 2016-05-27, central latitude 64.0°N, longitude 141.4°W. b) Willow, 2015-06-15, central
latitude 61.8°N, longitude 151.1°W. c) Northern Koyukuk 2016-07-15, central latitude 66.9°N, longitude 153.1°W. In a) and b), VIFDAHL fire pixels that are also detected by the global
VIIRS 375 m I-band product are shaded.
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Fig. 9. Overview and zoom into 2015 Yukon-Koyukuk study area, 2015-07-06, central latitude 65.9°N, longitude 152.7°W. Fire detection from a single VIIRS scene at 12:58 local time
(AKDT) on top of a Landsat 8 bands 7-5-3 false color RGB composite, with Landsat fire detections marked in red. a) Entire study area, VIFDAHL detections, zoomed-in area outlined in
red. b) Fire detections from the global VIIRS I-band product. c) VIFDAHL high-intensity detections. d) VIFDAHL low-intensity detections, with the locations of high intensity detections
masked out in black for greater visual clarity.
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to successfully avoid false detections from river banks or old fire scars,
future work should look more closely into errors of commission, in-
formed by experience gathered in operational use. Local VIFDAHL pro-
cessing enables enhanced geo-location, which can be used for superior
fire progression mapping (Fig. 10). Another application would be and
stacking of repeated VIFDAHL detections in the same location to be
used to estimate fire residence time, with potential links to fire severity.
Further study is desirable with the objective to test the algorithm on the
Canadian and Eurasian boreal forests.
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